

Regional Housing Needs Assessment Rezone GREENHOUSE GAS ANALYSIS CITY OF REDLANDS

PREPARED BY:

Haseeb Qureshi hqureshi@urbanxroads.com

Ali Dadabhoy adadabhoy@urbanxroads.com

Shannon Wong swong@urbanxroads.com

OCTOBER 8, 2024

TABLE OF CONTENTS

		F CONTENTSICES II	l
		EXHIBITS	II
LIS	ST OF 1	TABLES	II
		ABBREVIATED TERMS	
EX	ECUTI	VE SUMMARY	9
	ES.1	Summary of Findings	9
	ES.2	Project Requirements	9
1	IN	FRODUCTION	12
	1.1	Project Description	12
2	CLI	MATE CHANGE SETTING	15
	2.1	Introduction to Global Climate Change (GCC)	15
	2.2	Global Climate Change Defined	
	2.3	GHGs	15
	2.4	Global Warming Potential	22
	2.5	GHG Emissions Inventories	22
	2.6	Effects of Climate Change in California	23
	2.7	Regulatory Setting	25
3	PR	OJECT GHG IMPACT	46
	3.1	Introduction	46
	3.2	Standards of Significance	
	3.3	Models Employed To Analyze GHGs	48
	3.4	Life-Cycle Analysis Not Required	48
	3.5	Construction Emissions	48
	3.6	Operational Emissions	49
	3.7	GHG Emissions Findings and Recommendations	53
4	RE	FERENCES	60
5	CE	RTIFICATIONS	64

APPENDICES

APPENDIX 3.1: CALEEMOD APPROVED GENERAL PLAN BUILDOUT EMISSIONS MODEL OUTPUTS APPENDIX 3.2: CALEEMOD PROPOSED PROJECT EMISSIONS MODEL OUTPUTS

LIST OF EXHIBITS

EXHIBIT 1-A: HOUSING ELEMENT SITE LOCATION MAP EXHIBIT 2-A: SUMMARY OF PROJECTED GLOBAL WARMING IMPACT, 2070-2099 (AS COMPARED W 1961-1990)	ΊΤΗ
LIST OF TABLES	
TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS	9
TABLE 2-1: GHGS	16
TABLE 2-2: GWP AND ATMOSPHERIC LIFETIME OF SELECT GHGS	22
TABLE 2-3: TOP GHG PRODUCING COUNTRIES AND THE EUROPEAN UNION	23
TABLE 3-1: COMPARISON OF GENERAL PLAN AND PROPOSED PROJECT POPULATION GROWTH	51
TABLE 3-2: APPROVED GENERAL PLAN BUILDOUT EMISSIONS	52
TABLE 3-3: PROJECT SCENARIO GHG EMISSIONS	52
TABLE 3-4: PROPOSED PROJECT COMPARISON TO APPROVED GENERAL PLAN BUILDOUT	53
TABLE 3-5: PROJECT CONSISTENCY WITH 2022 SCOPING PLAN KEY RESIDENTIAL AND MIXED-USE	
PROJECT ATTRIBUTES THAT REDUCE GHGS	55

LIST OF ABBREVIATED TERMS

% Percent

°C Degrees Celsius
°F Degrees Fahrenheit

(1) Reference

2017 Scoping Plan Final 2017 Scoping Plan Update

AB Assembly Bill

AB 32 Global Warming Solutions Act of 2006

AB 1493 Pavley Fuel Efficiency Standards

AB 1881 California Water Conservation Landscaping Act of 2006

ACC Advanced Clean Cars
Annex I Industrialized Nations

APA Administrative Procedure Act

AQIA Regional Housing Needs Assessment Rezone Air Quality

Impact Analysis

BAU Business as Usual C_2F_6 Hexafluoroethane

C₂H₆ Ethane

 $C_2H_2F_4$ Tetrafluroethane $C_2H_4F_2$ Ethylidene Fluoride CAA Federal Clean Air Act

CalEEMod California Emissions Estimator Model

CalEPA California Environmental Protection Agency

CAL FIRE California Department of Forestry and Fire Protection
CALGAPS California LBNL GHG Analysis of Policies Spreadsheet

CALGreen California Green Building Standards Code
CalSTA California State Transportation Agency
Caltrans California Department of Transportation

CAP Climate Action Plan

CAPCOA California Air Pollution Control Officers Association

CARB California Air Resource Board

CBSC California Building Standards Commission

CEC California Energy Commission
CCR California Code of Regulations

CEQA California Environmental Quality Act
CEQA Guidelines 2019 CEQA Statute and Guidelines

CDFA California Department of Food and Agriculture

CFC Tetrafluoromethane
CFC Chlorofluorocarbons
CFC-113 Trichlorotrifluoroethane

CH₄ Methane

City City of Redlands

CNRA California Natural Resources Agency

CNRA 2009 2009 California Climate Adaptation Strategy

CO₂ Carbon Dioxide

CO₂e Carbon Dioxide Equivalent

Convention United Nation's Framework Convention on Climate Change

COP Conference of the Parties

CPUC California Public Utilities Commission
CTC California Transportation Commission

DOF Department of Finance

DWR Department of Water Resources

EMFAC Emission Factor Model

EPA Environmental Protection Agency

EV Electric Vehicle

EVSE Electric Vehicle Supply Equipment FED Functional Equivalent Document

GCC Global Climate Change

Gg Gigagram

GHGA Greenhouse Gas Analysis

GO-Biz Governor's Office of Business and Economic Development

gpd Gallons Per Day gpm Gallons Per Minute

GWP Global Warming Potential

H₂O Water

HFC Hydrofluorocarbons
HDT Heavy-Duty Trucks

HFC-23 Fluoroform

HFC-134a 1,1,1,2-tetrafluoroethane

HFC-152a 1,1-difluoroethane

HHDT Heavy-Heavy-Duty Trucks

hp Horsepower I-210 Interstate 210

IBANK California Infrastructure and Economic Development Bank

IPCC Intergovernmental Panel on Climate Change

IRP Integrated Resource Planning
ISO Independent System Operator

ITE Institute of Transportation Engineers

kWh Kilowatt Hours

lbs Pounds

LBNL Lawrence Berkeley National Laboratory

LCA Life-Cycle Analysis
LCD Liquid Crystal Display

LCFS Low Carbon Fuel Standard or Executive Order S-01-07

LDA Light-Duty Auto

LDT1/LDT2 Light-Duty Trucks

LEV III Low-Emission Vehicle

LHDT1/LHDT2 Light-Heavy-Duty Trucks

LULUCF Land-Use, Land-Use Change and Forestry

MARB/IPA March Air Reserve Base/Inland Port Airport

MCY Motorcycles MD Medium Duty

MDT Medium-Duty Trucks
MDV Medium-Duty Vehicles
MHDT Medium-Heavy-Duty Tucks
MRR Mandatory Reporting Rule

MMTCO₂e Million Metric Ton of Carbon Dioxide Equivalent

mpg Miles Per Gallon

MPOs Metropolitan Planning Organizations

MMTCO₂e/yr Million Metric Ton of Carbon Dioxide Equivalent Per Year

MT/yr Metric Tons Per Year

MTCO₂e Metric Ton of Carbon Dioxide Equivalent

MTCO₂e/yr Metric Ton of Carbon Dioxide Equivalent Per Year

MW Megawatts

MWh Megawatts Per Hour

MWELO California Department of Water Resources' Model Water

Efficient

N₂O Nitrous Oxide

NDC Nationally Determined Contributions

NF₃ Nitrogen Trifluoride

NHTSA National Highway Traffic Safety Administration

NIOSH National Institute for Occupational Safety and Health

NO_X Nitrogen Oxides

Non-Annex I Developing Nations

OAL Office of Administrative Law
OPR Office of Planning and Research

PFC Perfluorocarbons
ppb Parts Per Billion
ppm Parts Per Million
ppt Parts Per Trillion

Project Regional Housing Needs Assessment Rezone

RMC Riverside Municipal Code

RPS Renewable Portfolio Standards
RTP Regional Transportation Plan

SAFE Safer Affordable Fuel-Efficient Vehicles Rule

SB Senate Bill

SB 32 California Global Warming Solutions Act of 2006

SB 375 Regional GHG Emissions Reduction Targets/Sustainable

Communities Strategies

SB 1078 Renewable Portfolio Standards

SB 1368 Statewide Retail Provider Emissions Performance

Standards

SCAB South Coast Air Basin

SCAG Southern California Association of Governments
SCAQMD South Coast Air Quality Management District

SCE Southern California Edison

Scoping Plan California Air Resources Board Climate Change Scoping Plan

SCS Sustainable Communities Strategy

sf Square Feet

SF₆ Sulfur Hexaflouride

SGC Strategic Growth Council
SHGC Solar Heat Gain Coefficient

SLPS Short-Lived Climate Pollutant Strategy

SP Service Population

SWCRB State Water Resources Control Board
TDM Transportation Demand Measures
Title 20 Appliance Energy Efficiency Standards

Title 24 California Building Code

TMA Transportation Management Association

TOD Transit-Oriented Development

U.N. United Nations

U.S. United States

UNFCCC United Nations' Framework Convention on Climate Change

URBEMIS Urban Emissions
UTR Utility Tractors

VFP Vehicle Fueling Positions
VMT Vehicle Miles Traveled
WCI Western Climate Initiative

WRCOG Western Riverside Council of Governments

WRI World Resources Institute
WSAB West Santa Ana Branch

ZE/NZE Zero and Near-Zero Emissions

ZEV Zero-Emissions Vehicles

This page intentionally left blank

EXECUTIVE SUMMARY

ES.1 SUMMARY OF FINDINGS

The results of this *Regional Housing Needs Assessment Rezone Project Greenhouse Gas Analysis* (GHGA) is summarized below based on the significance criteria in Section 3 of this report consistent with Appendix G of the *California Environmental Quality Act (CEQA) Guidelines (CEQA Guidelines* (1). Table ES-1 shows the findings of significance for potential greenhouse gas (GHG) impacts under CEQA.

TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS

Analysis	Report	Significance Findings	
Analysis	Section	Unmitigated	Mitigated
GHG Impact #1: Would the Project generate GHG emissions either directly or indirectly, that may have a significant impact on the environment?	3.7	Potentially Significant	Significant and Unavoidable
GHG Impact #2: Would the Project conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of GHGs?	3.7	Potentially Significant	Significant and Unavoidable

ES.2 PROJECT REQUIREMENTS

Future developments pursuant to the proposed Project would be required to comply with regulations imposed by the State of California and the South Coast Air Quality Management District (SCAQMD) aimed at the reduction of air pollutant emissions. Those that are directly and indirectly applicable to future developments pursuant to the proposed Project and that would assist in the reduction of GHG emissions include:

- Global Warming Solutions Act of 2006 (Assembly Bill (AB) 32) (2).
- Regional GHG Emissions Reduction Targets/Sustainable Communities Strategies (Senate Bill (SB) 375) (3).
- Pavley Fuel Efficiency Standards (AB 1493). Establishes fuel efficiency ratings for new vehicles (4).
- California Building Code (Title 24 California Code of Regulations (CCR)) and CALGreen standards. Establishes energy efficiency requirements for new construction (5).
- Appliance Energy Efficiency Standards (Title 20 CCR). Establishes energy efficiency requirements for appliances (6).
- Low Carbon Fuel Standard (LCFS). Requires carbon content of fuel sold in California to be 10 percent (%) less by 2020 (7).

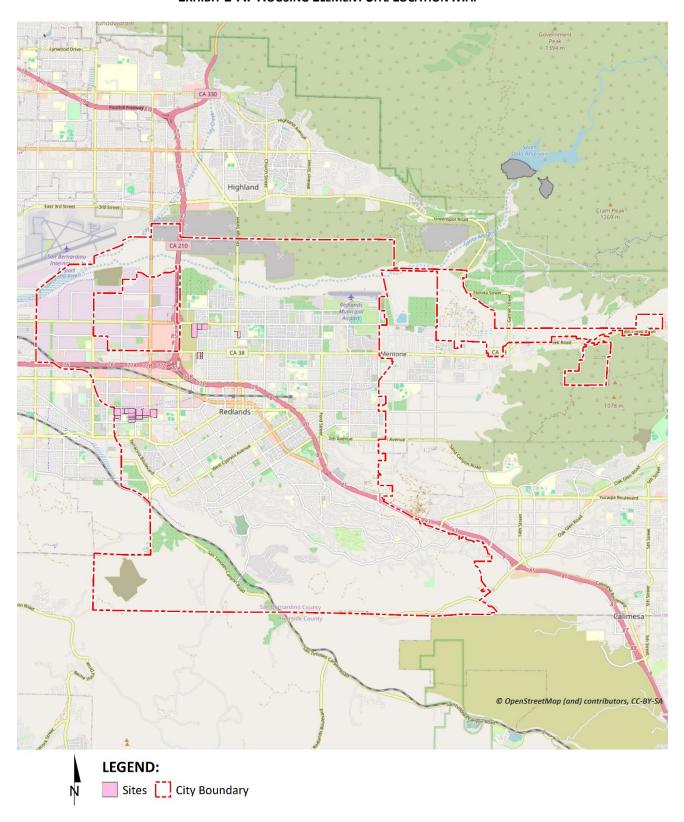
- California Water Conservation in Landscaping Act of 2006 (AB 1881). Requires local agencies to adopt the Department of Water Resources updated Water Efficient Landscape Ordinance or equivalent by January 1, 2010, to ensure efficient landscapes in new development and reduced water waste in existing landscapes (8).
- Statewide Retail Provider Emissions Performance Standards (SB 1368). Requires energy generators to achieve performance standards for GHG emissions (9).
- Renewable Portfolio Standards (SB 1078 also referred to as RPS). Requires electric corporations to increase the amount of energy obtained from eligible renewable energy resources to 20% by 2010 and 33% by 2020 (10).
- California Global Warming Solutions Act of 2006 (SB 32). Requires the state to reduce statewide GHG emissions to 40% below 1990 levels by 2030, a reduction target that was first introduced in Executive Order B-30-15 (11).

Promulgated regulations that will affect the emissions from future implementing developments are accounted for in the proposed Project's GHG calculations provided in this report. In particular, AB 1493, LCFS, and RPS are accounted for in the proposed Project's emission calculations.

This page intentionally left blank

1 INTRODUCTION

This report presents the results of the GHGA prepared by Urban Crossroads, Inc., for the proposed Redlands Regional Housing Needs Assessment Rezone Project (proposed Project). The purpose of this GHGA is to evaluate Project-related construction and operational emissions and determine the level of GHG impacts as a result of constructing and operating future developments pursuant to the Project.


1.1 PROJECT DESCRIPTION

The 2021-2029 Housing Element includes several provisions that aim to ensure the City can meet the required "fair share" of affordable housing units. Pursuant to Housing Element Program 1.1-1, the City of Redlands is proposing to rezone 24 sites for the purpose of increasing residential development capacity and ensuring compatibility with proposed residential uses. The 6th Cycle Housing Element Update indicates that, with the rezone, the City can accommodate approximately 2,436 housing units. With rezoning of Site 24 to ensure compatibility with the surrounding proposed residential uses, the proposed Project would also allow for 151,048.46 SF of Public/Institutional development.

The proposed Project includes the following components: a General Plan Amendment (GPA) to change the land use designations to enable the proposed rezoning, a Specific Plan Amendments (SPA) to remove 18 lots out of the EVCSP and 3 lots out of Concept Plan 4, and zone change to allow for medium and high-density residential development within the proposed Project site and Public/Institutional development within Site 24.

The Greenhouse Gas Analysis will evaluate the proposed development intensities expected for the 24 sites and assess the potential impacts that result from the implementation of the rezoning and changes to land use as well as compare the proposed development intensities to buildout pursuant to the existing General Plan land use and zoning designations. The City General Plan currently designates the proposed Project site for 1,656,699.86-sf of commercial/industrial, 552,340.90-sf for commercial, and 111 dwelling units for multi-family housing uses. The proposed Project will propose a total of 151,048.46-sf for public/institutional uses and 2,436 dwelling units for multi-family housing. Exhibit 1-A identifies the locations of each of the Housing Element sites shown on Appendix 3.1.

EXHIBIT 1-A: HOUSING ELEMENT SITE LOCATION MAP

This page intentionally left blank

2 CLIMATE CHANGE SETTING

2.1 Introduction to Global Climate Change (GCC)

GCC is defined as the change in average meteorological conditions on the earth with respect to temperature, precipitation, and storms. The majority of scientists believe that the climate shift taking place since the Industrial Revolution is occurring at a quicker rate and magnitude than in the past. Scientific evidence suggests that GCC is the result of increased concentrations of GHGs in the earth's atmosphere, including carbon dioxide (CO_2), methane (CH_4), nitrous oxide (N_2O), and fluorinated gases. The majority of scientists believe that this increased rate of climate change is the result of GHGs resulting from human activity and industrialization over the past 200 years.

An individual project like the proposed Project evaluated in this GHGA cannot generate enough GHG emissions to affect a discernible change in global climate. However, the proposed Project may participate in the potential for GCC by its incremental contribution of GHGs combined with the cumulative increase of all other sources of GHGs, which when taken together constitute potential influences on GCC. Because these changes may have serious environmental consequences, Section 3.0 will evaluate the potential for the proposed Project to have a significant effect upon the environment as a result of its potential contribution to the greenhouse effect.

2.2 GLOBAL CLIMATE CHANGE DEFINED

GCC refers to the change in average meteorological conditions on the earth with respect to temperature, wind patterns, precipitation, and storms. Global temperatures are regulated by naturally occurring atmospheric gases such as water vapor, CO_2 , N_2O , CH_4 , hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆). These particular gases are important due to their residence time (duration they stay) in the atmosphere, which ranges from 10 years to more than 100 years. These gases allow solar radiation into the earth's atmosphere, but prevent radiative heat from escaping, thus warming the earth's atmosphere. GCC can occur naturally as it has in the past with the previous ice ages.

Gases that trap heat in the atmosphere are often referred to as GHGs. GHGs are released into the atmosphere by both natural and anthropogenic activity. Without the natural GHG effect, the earth's average temperature would be approximately 61 degrees Fahrenheit (°F) cooler than it is currently. The cumulative accumulation of these gases in the earth's atmosphere is considered to be the cause for the observed increase in the earth's temperature.

2.3 GHGs

2.3.1 GHGs and Health Effects

GHGs trap heat in the atmosphere, creating a GHG effect that results in global warming and climate change. Many gases demonstrate these properties and as discussed in Table 2-1. For the purposes of this analysis, emissions of CO₂, CH₄, and N₂O were evaluated because these gases are the primary contributors to GCC from development projects. Although there are other

substances such as fluorinated gases that also contribute to GCC, these fluorinated gases were not evaluated as their sources are not well-defined and do not contain accepted emissions factors or methodology to accurately calculate these gases.

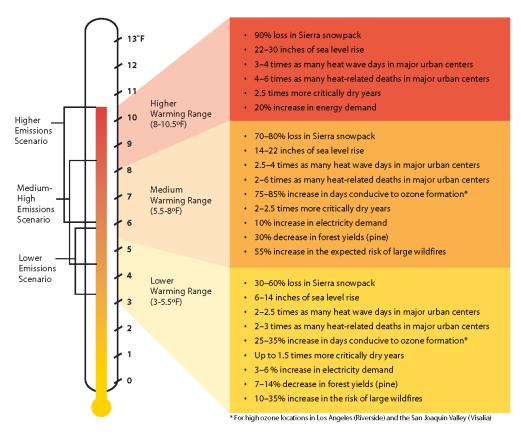
TABLE 2-1: GHGS

GHGs	Description	Sources	Health Effects
Water	Water is the most abundant, important, and variable GHG in the atmosphere. Water vapor is not considered a pollutant; in the atmosphere it maintains a climate necessary for life. Changes in its concentration are primarily considered to be a result of climate feedbacks related to the warming of the atmosphere rather than a direct result of industrialization. Climate feedback is an indirect, or secondary, change, either positive or negative, that occurs within the climate system in response to a forcing mechanism. The feedback loop in which water is involved is critically important to projecting future climate change. As the temperature of the atmosphere rises, more water is evaporated from ground storage (rivers, oceans, reservoirs, soil). Because the air is warmer, the relative humidity can be higher (in essence, the air is able to 'hold' more water when it is warmer), leading to more water vapor in the atmosphere. As a GHG, the higher concentration of water vapor is then able to absorb more thermal indirect energy radiated from the Earth, thus further warming the atmosphere can then hold more water vapor and so on and so on. This is referred to as a "positive feedback loop." The extent to which this positive feedback loop would continue is	The main source of water vapor is evaporation from the oceans (approximately 85%). Other sources include evaporation from other water bodies, sublimation (change from solid to gas) from sea ice and snow, and transpiration from plant leaves.	There are no known direct health effects related to water vapor at this time. It should be noted however that when some pollutants react with water vapor, the reaction forms a transport mechanism for some of these pollutants to enter the human body through water vapor.

GHGs	Description	Sources	Health Effects
	unknown as there are also dynamics that hold the positive feedback loop in check. As an example, when water vapor increases in the atmosphere, more of it would eventually condense into clouds, which are more able to reflect incoming solar radiation (thus allowing less energy to reach the earth's surface and heat it up) (12).		
CO ₂	CO ₂ is an odorless and colorless GHG. Since the industrial revolution began in the mid-1700s, the sort of human activity that increases GHG emissions has increased dramatically in scale and distribution. Data from the past 50 years suggests a corollary increase in levels and concentrations. As an example, prior to the industrial revolution, CO ₂ concentrations were fairly stable at 280 parts per million (ppm). Today, they are around 370 ppm, an increase of more than 30%. Left unchecked, the concentration of CO ₂ in the atmosphere is projected to increase to a minimum of 540 ppm by 2100 as a direct result of anthropogenic sources (13).	CO ₂ is emitted from natural and manmade sources. Natural sources include: the decomposition of dead organic matter; respiration of bacteria, plants, animals, and fungus; evaporation from oceans; and volcanic outgassing. Anthropogenic sources include: the burning of coal, oil, natural gas, and wood. CO ₂ is naturally removed from the air by photosynthesis, dissolution into ocean water, transfer to soils and ice caps, and chemical weathering of carbonate rocks (14).	Outdoor levels of CO ₂ are not high enough to result in negative health effects. According to the National Institute for Occupational Safety and Health (NIOSH) high concentrations of CO ₂ can result in health effects such as: headaches, dizziness, restlessness, difficulty breathing, sweating, increased heart rate, increased cardiac output, increased blood pressure, coma, asphyxia, and/or convulsions. It should be noted that current concentrations of CO ₂ in the earth's atmosphere are estimated to be approximately 370 ppm, the actual reference exposure level (level at which adverse health effects typically occur) is at exposure levels of 5,000 ppm averaged over 10 hours in a 40-hour workweek and short-term reference exposure levels of 30,000 ppm averaged over a 15 minute period (15).

GHGs	Description	Sources	Health Effects
CH ₄	CH ₄ is an extremely effective absorber of radiation, although its atmospheric concentration is less than CO ₂ and its lifetime in the atmosphere is brief (10-12 years), compared to other GHGs.	CH ₄ has both natural and anthropogenic sources. It is released as part of the biological processes in low oxygen environments, such as in swamplands or in rice production (at the roots of the plants). Over the last 50 years, human activities such as growing rice, raising cattle, using natural gas, and mining coal have added to the atmospheric concentration of CH ₄ . Other anthropocentric sources include fossil-fuel combustion and biomass burning (16).	CH ₄ is extremely reactive with oxidizers, halogens, and other halogen-containing compounds. Exposure to elevated levels of CH ₄ can cause asphyxiation, loss of consciousness, headache and dizziness, nausea and vomiting, weakness, loss of coordination, and an increased breathing rate.
N₂O	N ₂ O, also known as laughing gas, is a colorless GHG. Concentrations of N ₂ O also began to rise at the beginning of the industrial revolution. In 1998, the global concentration was 314 parts per billion (ppb).	N ₂ O is produced by microbial processes in soil and water, including those reactions which occur in fertilizer containing nitrogen. In addition to agricultural sources, some industrial processes (fossil fuel-fired power plants, nylon production, nitric acid production, and vehicle emissions) also contribute to its atmospheric load. It is used as an aerosol spray propellant, i.e., in whipped cream	N₂O can cause dizziness, euphoria, and sometimes slight hallucinations. In small doses, it is considered harmless. However, in some cases, heavy and extended use can cause Olney's Lesions (brain damage) (17).

GHGs	Description	Sources	Health Effects
		bottles. It is also used in potato chip bags to keep chips fresh. It is used in rocket engines and in race cars. N ₂ O can be transported into the stratosphere, be deposited on the earth's surface, and be converted to other compounds by chemical reaction (17).	
Chlorofluorocarbons (CFCs)	CFCs are gases formed synthetically by replacing all hydrogen atoms in CH ₄ or ethane (C ₂ H ₆) with chlorine and/or fluorine atoms. CFCs are nontoxic, nonflammable, insoluble and chemically unreactive in the troposphere (the level of air at the earth's surface).	CFCs have no natural source but were first synthesized in 1928. They were used for refrigerants, aerosol propellants and cleaning solvents. Due to the discovery that they are able to destroy stratospheric ozone, a global effort to halt their production was undertaken and was extremely successful, so much so that levels of the major CFCs are now remaining steady or declining. However, their long atmospheric lifetimes mean that some of the CFCs would remain in the atmosphere for over 100 years (18).	In confined indoor locations, working with CFC-113 or other CFCs is thought to result in death by cardiac arrhythmia (heart frequency too high or too low) or asphyxiation.


GHGs	Description	Sources	Health Effects
HFCs	HFCs are synthetic, man-made chemicals that are used as a substitute for CFCs. Out of all the GHGs, they are one of three groups with the highest global warming potential (GWP). The HFCs with the largest measured atmospheric abundances are (in order), Fluoroform (HFC-23), 1,1,1,2-tetrafluoroethane (HFC-134a), and 1,1-difluoroethane (HFC-152a). Prior to 1990, the only significant emissions were of HFC-23. HCF-134a emissions are increasing due to its use as a refrigerant.	HFCs are manmade for applications such as automobile air conditioners and refrigerants.	No health effects are known to result from exposure to HFCs.
PFCs	PFCs have stable molecular structures and do not break down through chemical processes in the lower atmosphere. High-energy ultraviolet rays, which occur about 60 kilometers above earth's surface, are able to destroy the compounds. Because of this, PFCs have exceptionally long lifetimes, between 10,000 and 50,000 years. Two common PFCs are tetrafluoromethane (C ₂ F ₆). The EPA estimates that concentrations of CF ₄ in the atmosphere are over 70 parts per trillion (ppt).	The two main sources of PFCs are primary aluminum production and semiconductor manufacture.	No health effects are known to result from exposure to PFCs.
SF ₆	SF_6 is an inorganic, odorless, colorless, nontoxic, nonflammable gas. It also has the highest GWP of any gas evaluated (23,900) (19). The EPA indicates that concentrations in the 1990s were about 4 ppt.	SF ₆ is used for insulation in electric power transmission and distribution equipment, in the magnesium industry, in semiconductor manufacturing, and as a tracer gas for leak detection.	In high concentrations in confined areas, the gas presents the hazard of suffocation because it displaces the oxygen needed for breathing.

GHGs	Description	Sources	Health Effects
Nitrogen Trifluoride (NF ₃)	NF ₃ is a colorless gas with a distinctly moldy odor. The World Resources Institute (WRI) indicates that NF ₃ has a 100-year GWP of 17,200 (20).	NF ₃ is used in industrial processes and is produced in the manufacturing of semiconductors, Liquid Crystal Display (LCD) panels, types of solar panels, and chemical lasers.	Long-term or repeated exposure may affect the liver and kidneys and may cause fluorosis (21).

The potential health effects related directly to the emissions of CO₂, CH₄, and N₂O as they relate to development projects such as the proposed Project are still being debated in the scientific community. Their cumulative effects to GCC have the potential to cause adverse effects to human health. Increases in Earth's ambient temperatures would result in more intense heat waves, causing more heat-related deaths. Climate change would likely cause shifts in weather patterns, potentially resulting in devastating droughts and food shortages in some areas (22). Exhibit 2-A presents the potential impacts of global warming (23).

EXHIBIT 2-A: SUMMARY OF PROJECTED GLOBAL WARMING IMPACT, 2070-2099 (AS COMPARED WITH 1961-1990)

Source: Barbara H. Allen-Diaz. "Climate change affects us all." University of California, Agriculture and Natural Resources, 2009.

2.4 GLOBAL WARMING POTENTIAL

GHGs have varying GWP values. GWP of a GHG indicates the amount of warming a gas cause over a given period of time and represents the potential of a gas to trap heat in the atmosphere. CO_2 is utilized as the reference gas for GWP, and thus has a GWP of 1. CO_2 equivalent (CO_2 e) is a term used for describing the difference GHGs in a common unit. CO_2 e signifies the amount of CO_2 which would have the equivalent GWP.

The Intergovernmental Panel on Climate Change (IPCC) is the international body for assessing the science related to climate change. IPCC Assessment Reports cover the full scientific, technical and socio-economic assessment of climate change. The atmospheric lifetime and GWP of selected GHGs are summarized at Table 2-2. As shown in the table below, GWP for the 2^{nd} Assessment Report range from 1 for CO_2 to 23,900 for SF_6 and GWP for the 6^{th} Assessment Report range from 1 for CO_2 to 25,200 for SF_6 (24).

TABLE 2-2: GWP AND ATMOSPHERIC LIFETIME OF SELECT GHGS

Gas	Atmospheric Lifetime	GWP (100-year time horizon)	
GdS	(years)	2 nd Assessment Report	6 th Assessment Report
CO ₂	Multiple	1	1
CH ₄	11.8	21	28
N ₂ O	109	310	273
HFC-23	228	11,700	14,600
HFC-134a	14	1,300	1,526
HFC-152a	1.6	140	164
SF ₆	3,200	23,900	25,200

Source: IPCC Second Assessment Report, 1995 and IPCC Sixth Assessment Report, 2023

2.5 GHG EMISSIONS INVENTORIES

2.5.1 **GLOBAL**

Worldwide anthropogenic GHG emissions are tracked by the IPCC for industrialized nations (referred to as Annex I) and developing nations (referred to as Non-Annex I). Human GHG emissions data for Annex I nations are available through 2021. Based on the latest available data, the sum of these emissions totaled approximately 28,272,940 gigagram (Gg) CO_2e^1 (25) (26) as summarized on Table 2-3.

The global emissions are the sum of Annex I and non-Annex I countries, without counting Land-Use, Land-Use Change and Forestry (LULUCF). For countries without 2021 data, the United Nations' Framework Convention on Climate Change (UNFCCC) data for the most recent year were used U.N. Framework Convention on Climate Change, "Annex I Parties – GHG total without LULUCF," The most recent GHG emissions for China and India are from 2014 and 2016, respectively.

2.5.2 UNITED STATES

As noted in Table 2-3, the United States, as a single country, was the number two producer of GHG emissions in 2021.

TABLE 2-3: TOP GHG PRODUCING COUNTRIES AND THE EUROPEAN UNION

Emitting Countries	GHG Emissions (Gg CO₂e)
China	12,300,200
United States	6,340,228
European Union (27-member countries)	3,468,394
India	2,839,425
Russian Federation	2,156,599
Japan	1,168,094
Total	28,272,940

2.5.3 STATE OF CALIFORNIA

California has significantly slowed the rate of growth of GHG emissions due to the implementation of energy efficiency programs as well as adoption of strict emission controls but is still a substantial contributor to the United States (U.S.) emissions inventory total (17). The California Air Resource Board (CARB) compiles GHG inventories for the State of California. Based upon the 2023 GHG inventory data (i.e., the latest year for which data are available) for the 2000-2021 GHG emissions period, California emitted an average 381.3 million metric tons of CO₂e per year (MMTCO₂e/yr) or 381,300 Gg CO₂e (6.01% of the total United States GHG emissions) (27). Based on data published by the U.S. Energy Information Administration, California's per capita (9.12 metric tons) GHG emissions are much less than the nationwide per capita (15.8 metric ton) average (28).

2.6 EFFECTS OF CLIMATE CHANGE IN CALIFORNIA

2.6.1 PUBLIC HEALTH

Higher temperatures may increase the frequency, duration, and intensity of conditions conducive to air pollution formation. For example, days with weather conducive to ozone formation could increase from 25 to 35% under the lower warming range to 75 to 85% under the medium warming range. In addition, if global background ozone levels increase as predicted in some scenarios, it may become impossible to meet local air quality standards. Air quality could be further compromised by increases in wildfires, which emit fine particulate matter that can travel long distances, depending on wind conditions. Based on *Our Changing Climate Assessing the Risks to California by the California Climate Change Center*, large wildfires could become up to 55% more frequent if GHG emissions are not significantly reduced (29).

In addition, under the higher warming range scenario, there could be up to 100 more days per year with temperatures above 90°F in Los Angeles and 95°F in Sacramento by 2100. This is a

significant increase over historical patterns and approximately twice the increase projected if temperatures remain within or below the lower warming range. Rising temperatures could increase the risk of death from dehydration, heat stroke/exhaustion, heart attack, stroke, and respiratory distress caused by extreme heat.

2.6.2 WATER RESOURCES

A vast network of man-made reservoirs and aqueducts captures and transports water throughout the state from northern California rivers and the Colorado River. The current distribution system relies on Sierra Nevada snowpack to supply water during the dry spring and summer months. Rising temperatures, potentially compounded by decreases in precipitation, could severely reduce spring snowpack, increasing the risk of summer water shortages.

If temperatures continue to increase, more precipitation could fall as rain instead of snow, and the snow that does fall could melt earlier, reducing the Sierra Nevada spring snowpack by as much as 70 to 90%. Under the lower warming range scenario, snowpack losses could be only half as large as those possible if temperatures were to rise to the higher warming range. How much snowpack could be lost depends in part on future precipitation patterns, the projections for which remain uncertain. However, even under the wetter climate projections, the loss of snowpack could pose challenges to water managers and hamper hydropower generation. It could also adversely affect winter tourism. Under the lower warming range, the ski season at lower elevations could be reduced by as much as a month. If temperatures reach the higher warming range and precipitation declines, there might be many years with insufficient snow for skiing and snowboarding.

The State's water supplies are also at risk from rising sea levels. An influx of saltwater could degrade California's estuaries, wetlands, and groundwater aquifers. Saltwater intrusion caused by rising sea levels is a major threat to the quality and reliability of water within the southern edge of the Sacramento/San Joaquin River Delta – a major fresh water supply.

2.6.3 AGRICULTURE

Increased temperatures could cause widespread changes to the agriculture industry reducing the quantity and quality of agricultural products statewide. First, California farmers could possibly lose as much as 25% of the water supply needed. Although higher CO₂ levels can stimulate plant production and increase plant water-use efficiency, California's farmers could face greater water demand for crops and a less reliable water supply as temperatures rise. Crop growth and development could change, as could the intensity and frequency of pest and disease outbreaks. Rising temperatures could aggravate ozone pollution, which makes plants more susceptible to disease and pests and interferes with plant growth.

Plant growth tends to be slow at low temperatures, increasing with rising temperatures up to a threshold. However, faster growth can result in less-than-optimal development for many crops, so rising temperatures could worsen the quantity and quality of yield for a number of California's agricultural products. Products likely to be most affected include wine grapes, fruits, and nuts.

In addition, continued GCC could shift the ranges of existing invasive plants and weeds and alter competition patterns with native plants. Range expansion could occur in many species while range contractions may be less likely in rapidly evolving species with significant populations already established. Should range contractions occur, new or different weed species could fill the emerging gaps. Continued GCC could alter the abundance and types of many pests, lengthen pests' breeding season, and increase pathogen growth rates.

2.6.4 FORESTS AND LANDSCAPES

GCC has the potential to intensify the current threat to forests and landscapes by increasing the risk of wildfire and altering the distribution and character of natural vegetation. If temperatures rise into the medium warming range, the risk of large wildfires in California could increase by as much as 55%, which is almost twice the increase expected if temperatures stay in the lower warming range. However, since wildfire risk is determined by a combination of factors, including precipitation, winds, temperature, and landscape and vegetation conditions, future risks would not be uniform throughout the state. In contrast, wildfires in northern California could increase by up to 90% due to decreased precipitation.

Moreover, continued GCC has the potential to alter natural ecosystems and biological diversity within the state. For example, alpine and subalpine ecosystems could decline by as much as 60 to 80% by the end of the century as a result of increasing temperatures. The productivity of the state's forests has the potential to decrease as a result of GCC.

2.6.5 RISING SEA LEVELS

Rising sea levels, more intense coastal storms, and warmer water temperatures could increasingly threaten the state's coastal regions. Under the higher warming range scenario, sea level is anticipated to rise 22 to 35 inches by 2100. Elevations of this magnitude would inundate low-lying coastal areas with saltwater, accelerate coastal erosion, threaten vital levees and inland water systems, and disrupt wetlands and natural habitats. Under the lower warming range scenario, sea level could rise 12-14 inches.

2.7 REGULATORY SETTING

2.7.1 International

Climate change is a global issue involving GHG emissions from all around the world; therefore, countries such as the ones discussed below have made an effort to reduce GHGs.

IPCC

In 1988, the United Nations (U.N.) and the World Meteorological Organization established the IPCC to assess the scientific, technical, and socioeconomic information relevant to understanding the scientific basis of risk of human-induced climate change, its potential impacts, and options for adaptation and mitigation.

United Nation's Framework Convention on Climate Change (UNFCCC)

On March 21, 1994, the U.S. joined a number of countries around the world in signing the Convention. Under the UNFCCC, governments gather and share information on GHG emissions, national policies, and best practices; launch national strategies for addressing GHG emissions and adapting to expected impacts, including the provision of financial and technological support to developing countries; and cooperate in preparing for adaptation to the impacts of climate change.

INTERNATIONAL CLIMATE CHANGE TREATIES

The Kyoto Protocol is an international agreement linked to the UNFCCC. The major feature of the Kyoto Protocol is that it sets binding targets for 37 industrialized countries and the European community for reducing GHG emissions at an average of 5% against 1990 levels over the five-year period 2008–2012. The Convention (as discussed above) encouraged industrialized countries to stabilize emissions; however, the Protocol commits them to do so. Developed countries have contributed more emissions over the last 150 years; therefore, the Protocol places a heavier burden on developed nations under the principle of "common but differentiated responsibilities."

In 2001, President George W. Bush indicated that he would not submit the treaty to the U.S. Senate for ratification, which effectively ended American involvement in the Kyoto Protocol. In December 2009, international leaders met in Copenhagen to address the future of international climate change commitments post-Kyoto. No binding agreement was reached in Copenhagen; however, the UN Climate Change Committee identified the long-term goal of limiting the maximum global average temperature increase to no more than 2 degrees Celsius (°C) above preindustrial levels, subject to a review in 2015. The Committee held additional meetings in Durban, South Africa in November 2011; Doha, Qatar in November 2012; and Warsaw, Poland in November 2013. The meetings gradually gained consensus among participants on individual climate change issues.

On September 23, 2014, more than 100 Heads of State and Government and leaders from the private sector and civil society met at the Climate Summit in New York hosted by the U.N. At the Summit, heads of government, business and civil society announced actions in areas that would have the greatest impact on reducing emissions, including climate finance, energy, transport, industry, agriculture, cities, forests, and building resilience.

Parties to the UNFCCC reached a landmark agreement on December 12, 2015, in Paris, charting a fundamentally new course in the two-decade-old global climate effort. Culminating a four-year negotiating round, the new treaty ends the strict differentiation between developed and developing countries that characterized earlier efforts, replacing it with a common framework that commits all countries to put forward their best efforts and to strengthen them in the years ahead. This includes, for the first time, requirements that all parties report regularly on their emissions and implementation efforts and undergo international review.

The agreement and a companion decision by parties were the key outcomes of the conference, known as the 21st session of the UNFCCC Conference of the Parties (COP) 21. Together, the Paris Agreement and the accompanying COP decision:

- Reaffirm the goal of limiting global temperature increase well below 2°C, while urging efforts to limit the increase to 1.5 degrees;
- Establish binding commitments by all parties to make "nationally determined contributions" (NDCs), and to pursue domestic measures aimed at achieving them;
- Commit all countries to report regularly on their emissions and "progress made in implementing and achieving" their NDCs, and to undergo international review;
- Commit all countries to submit new NDCs every five years, with the clear expectation that they would "represent a progression" beyond previous ones;
- Reaffirm the binding obligations of developed countries under the UNFCCC to support the
 efforts of developing countries, while for the first time encouraging voluntary contributions
 by developing countries too;
- Extend the current goal of mobilizing \$100 billion a year in support by 2020 through 2025, with a new, higher goal to be set for the period after 2025;
- Extend a mechanism to address "loss and damage" resulting from climate change, which explicitly would not "involve or provide a basis for any liability or compensation;"
- Require parties engaging in international emissions trading to avoid "double counting;" and
- Call for a new mechanism, similar to the Clean Development Mechanism under the Kyoto Protocol, enabling emission reductions in one country to be counted toward another country's NDC (C2ES 2015a) (30).

Following President Biden's day one executive order, the United States officially rejoined the landmark Paris Agreement on February 19, 2021, positioning the country to once again be part of the global climate solution. Meanwhile, city, state, business, and civic leaders across the country and around the world have been ramping up efforts to drive the clean energy advances needed to meet the goals of the agreement and put the brakes on dangerous climate change.

2.7.2 NATIONAL

Prior to the last decade, there have been no concrete federal regulations of GHGs or major planning for climate change adaptation. The following are actions regarding the federal government, GHGs, and fuel efficiency.

GHG ENDANGERMENT

In Massachusetts v. Environmental Protection Agency 549 U.S. 497 (2007), decided on April 2, 2007, the United States Supreme Court (Supreme Court) found that four GHGs, including CO₂, are air pollutants subject to regulation under Section 202(a)(1) of the Clean Air Act (CAA). The Supreme Court held that the EPA Administrator must determine whether emissions of GHGs from new motor vehicles cause or contribute to air pollution, which may reasonably be anticipated to endanger public health or welfare, or whether the science is too uncertain to make a reasoned

decision. On December 7, 2009, the EPA Administrator signed two distinct findings regarding GHGs under section 202(a) of the CAA:

- Endangerment Finding: The Administrator finds that the current and projected concentrations of the six key well-mixed GHGs— CO₂, CH₄, N₂O, HFCs, PFCs, and SF₆—in the atmosphere threaten the public health and welfare of current and future generations.
- Cause or Contribute Finding: The Administrator finds that the combined emissions of these
 well-mixed GHGs from new motor vehicles and new motor vehicle engines contribute to
 the GHG pollution, which threatens public health and welfare.

These findings do not impose requirements on industry or other entities. However, this was a prerequisite for implementing GHG emissions standards for vehicles, as discussed in the section "Clean Vehicles" below. After a lengthy legal challenge, the Supreme Court declined to review an Appeals Court ruling that upheld the EPA Administrator's findings (31).

CLEAN VEHICLES

Congress first passed the Corporate Average Fuel Economy law in 1975 to increase the fuel economy of cars and light duty trucks. The law has become more stringent over time. On May 19, 2009, President Obama put in motion a new national policy to increase fuel economy for all new cars and trucks sold in the U.S. On April 1, 2010, the EPA, and the Department of Transportation's National Highway Traffic Safety Administration (NHTSA) announced a joint final rule establishing a national program that would reduce GHG emissions and improve fuel economy for new cars and trucks sold in the U.S.

The first phase of the national program applies to passenger cars, light-duty trucks, and medium-duty (MD) passenger vehicles, covering model years 2012 through 2016. They require these vehicles to meet an estimated combined average emissions level of 250 grams of CO₂ per mile, equivalent to 35.5 miles per gallon (mpg) if the automobile industry were to meet this CO₂ level solely through fuel economy improvements. Together, these standards would cut CO₂ emissions by an estimated 960 million metric tons and 1.8 billion barrels of oil over the lifetime of the vehicles sold under the program (model years 2012–2016). The EPA and the NHTSA issued final rules on a second-phase joint rulemaking establishing national standards for light-duty vehicles for model years 2017 through 2025 in August 2012. The new standards for model years 2017 through 2025 apply to passenger cars, light-duty trucks, and MD passenger vehicles. The final standards are projected to result in an average industry fleetwide level of 163 grams/mile of CO₂ in model year 2025, which is equivalent to 54.5 mpg if achieved exclusively through fuel economy improvements.

The EPA and the U.S. Department of Transportation issued final rules for the first national standards to reduce GHG emissions and improve fuel efficiency of HDT and buses on September 15, 2011, effective November 14, 2011. For combination tractors, the agencies are proposing engine and vehicle standards that begin in the 2014 model year and achieve up to a 20% reduction in CO₂ emissions and fuel consumption by the 2018 model year. For HDT and vans, the agencies are proposing separate gasoline and diesel truck standards, which phase in starting in the 2014 model year and achieve up to a 10% reduction for gasoline vehicles and a 15% reduction for diesel vehicles by the 2018 model year (12 and 17% respectively if accounting for air

conditioning leakage). Lastly, for vocational vehicles, the engine and vehicle standards would achieve up to a 10% reduction in fuel consumption and CO_2 emissions from the 2014 to 2018 model years.

On April 2, 2018, the EPA signed the Mid-term Evaluation Final Determination, which declared that the MY 2022-2025 GHG standards are not appropriate and should be revised (32). This Final Determination serves to initiate a notice to further consider appropriate standards for MY 2022-2025 light-duty vehicles. On August 2, 2018, the NHTSA in conjunction with the EPA, released a notice of proposed rulemaking, the Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule for Model Years 2021-2026 Passenger Cars and Light Trucks (SAFE Vehicles Rule). The SAFE Vehicles Rule was proposed to amend existing Corporate Average Fuel Economy (CAFE) and tailpipe CO2 standards for passenger cars and light trucks and to establish new standards covering model years 2021 through 2026. As of March 31, 2020, the NHTSA and EPA finalized the SAFE Vehicle Rule which increased stringency of CAFE and CO₂ emissions standards by 1.5% each year through model year 2026 (33). On December 21, 2021, after reviewing all the public comments submitted on NHTSA's April 2021 Notice of Proposed Rulemaking, NHTSA finalizes the CAFE Preemption rulemaking to withdraw its portions of the so-called SAFE I Rule. The final rule concludes that the SAFE I Rule overstepped the agency's legal authority and established overly broad prohibitions that did not account for a variety of important state and local interests. The final rule ensures that the SAFE I Rule will no longer form an improper barrier to states exploring creative solutions to address their local communities' environmental and public health challenges (34).

On March 31, 2022, NHTSA finalized CAFE standards for MY 2024-2026. The standards for passenger cars and light trucks for MYs 2024-2025 were increased at a rate of 8% per year and then increased at a rate of 10% per year for MY 2026 vehicles. NHTSA currently projects that the revised standards would require an industry fleet-wide average of roughly 49 mpg in MY 2026 and would reduce average fuel outlays over the lifetimes of affected vehicles that provide consumers hundreds of dollars in net savings. These standards are directly responsive to the agency's statutory mandate to improve energy conservation and reduce the nation's energy dependence on foreign sources (35).

2.7.3 CALIFORNIA

California has a long history of adopting regulations to improve energy efficiency in new and remodeled buildings. These regulations have kept California's energy consumption relatively flat even with rapid population growth.

2.7.3.1 LEGISLATIVE ACTIONS TO REDUCE GHGS

The State of California legislature has enacted a series of bills that constitute the most aggressive program to reduce GHGs of any state in the nation. Some legislation such as the landmark AB 32 was specifically enacted to address GHG emissions. Other legislation such as Title 24 and Title 20 energy standards were originally adopted for other purposes such as energy and water conservation, but also provide GHG reductions. This section describes the major provisions of the legislation.

AB32

The California State Legislature enacted AB 32, which required that GHGs emitted in California be reduced to 1990 levels by the year 2020 (this goal has been met^2). GHGs as defined under AB 32 include CO_2 , CH_4 , N_2O , HFCs, PFCs, and SF_6 . Since AB 32 was enacted, a seventh chemical, NF_3 , has also been added to the list of GHGs. CARB is the state agency charged with monitoring and regulating sources of GHGs. Pursuant to AB 32, CARB adopted regulations to achieve the maximum technologically feasible and cost-effective GHG emission reductions. AB 32 states the following:

"Global warming poses a serious threat to the economic well-being, public health, natural resources, and the environment of California. The potential adverse impacts of global warming include the exacerbation of air quality problems, a reduction in the quality and supply of water to the state from the Sierra snowpack, a rise in sea levels resulting in the displacement of thousands of coastal businesses and residences, damage to marine ecosystems and the natural environment, and an increase in the incidences of infectious diseases, asthma, and other human health-related problems."

SB 375

On September 30, 2008, SB 375 was signed by Governor Schwarzenegger. According to SB 375, the transportation sector is the largest contributor of GHG emissions, which emits over 40% of the total GHG emissions in California. SB 375 states, "Without improved land use and transportation policy, California would not be able to achieve the goals of AB 32." SB 375 does the following: it (1) requires metropolitan planning organizations (MPOs) to include sustainable community strategies in their regional transportation plans for reducing GHG emissions, (2) aligns planning for transportation and housing, and (3) creates specified incentives for the implementation of the strategies.

SB 375 requires MPOs to prepare a Sustainable Communities Strategy (SCS) within the Regional Transportation Plan (RTP) that guides growth while taking into account the transportation, housing, environmental, and economic needs of the region. SB 375 uses CEQA streamlining as an incentive to encourage residential projects, which help achieve AB 32 goals to reduce GHG emissions. Although SB 375 does not prevent CARB from adopting additional regulations, such actions are not anticipated in the foreseeable future.

Concerning CEQA, SB 375, as codified in Public Resources Code Section 21159.28, states that CEQA findings for certain projects are not required to reference, describe, or discuss (1) growth inducing impacts, or (2) any project-specific or cumulative impacts from cars and light-duty truck trips generated by the project on global warming or the regional transportation network, if the project:

- 1. Is in an area with an approved sustainable communities strategy or an alternative planning strategy that CARB accepts as achieving the GHG emission reduction targets.
- 2. Is consistent with that strategy (in designation, density, building intensity, and applicable policies).

_

² Based upon the 2019 GHG inventory data (i.e., the latest year for which data are available) for the 2000-2017 GHG emissions period, California emitted an average 424.1 MMTCO₂e (53). This is less than the 2020 emissions target of 431 MMTCO₂e.

3. Incorporates the MMs required by an applicable prior environmental document.

AB 1493 - Pavley Fuel Efficiency Standards

The second phase of the implementation for the Pavley bill was incorporated into Amendments to the Low-Emission Vehicle Program (LEV III) or the Advanced Clean Cars (ACC) program. The ACC program combines the control of smog-causing pollutants and GHG emissions into a single coordinated package of requirements for MY 2017 through 2025. The regulation will reduce GHGs from new cars by 34% from 2016 levels by 2025. The new rules will clean up gasoline and diesel-powered cars, and deliver increasing numbers of zero-emission technologies, such as full battery electric cars, newly emerging plug-in hybrid EV and hydrogen fuel cell cars. The package will also ensure adequate fueling infrastructure is available for the increasing numbers of hydrogen fuel cell vehicles planned for deployment in California. On March 9, EPA reinstated California's authority under the Clean Air Act to implement its own GHG emission standards for cars and light trucks, which other states can also adopt and enforce. With this authority restored, EPA will continue partnering with states to advance the next generation of clean vehicle technologies.

CLEAN ENERGY AND POLLUTION REDUCTION ACT OF 2015 (SB 350)

In October 2015, the legislature approved, and Governor Jerry Brown signed SB 350, which reaffirms California's commitment to reducing its GHG emissions and addressing climate change. Key provisions include an increase in the RPS, higher energy efficiency requirements for buildings, initial strategies towards a regional electricity grid, and improved infrastructure for EV charging stations. Provisions for a 50% reduction in the use of petroleum statewide were removed from the Bill because of opposition and concern that it would prevent the Bill's passage. Specifically, SB 350 requires the following to reduce statewide GHG emissions:

- Increase the amount of electricity procured from renewable energy sources from 33% to 50% by 2030, with interim targets of 40% by 2024, and 25% by 2027.
- Double the energy efficiency in existing buildings by 2030. This target would be achieved through the California Public Utilities Commission (CPUC), the California Energy Commission (CEC), and local publicly owned utilities.
- Reorganize the Independent System Operator (ISO) to develop more regional electrify transmission markets and to improve accessibility in these markets, which would facilitate the growth of renewable energy markets in the western United States.

SB 32

On September 8, 2016, Governor Brown signed SB 32 and its companion bill, AB 197. SB 32 requires the state to reduce statewide GHG emissions to 40% below 1990 levels by 2030, a reduction target that was first introduced in Executive Order B-30-15. The new legislation builds upon the AB 32 goal and provides an intermediate goal to achieving S-3-05, which sets a statewide GHG reduction target of 80% below 1990 levels by 2050. AB 197 creates a legislative committee to oversee regulators to ensure that CARB not only responds to the Governor, but also the Legislature (11).

2017 CARB SCOPING PLAN

In November 2017, CARB released the *Final 2017 Scoping Plan Update* (2017 Scoping Plan), which identifies the State's post-2020 reduction strategy. The 2017 Scoping Plan reflects the 2030 target of a 40% reduction below 1990 levels, set by Executive Order B-30-15 and codified by SB 32. Key programs that the proposed Second Update builds upon include the Cap-and-Trade Regulation, the LCFS, and much cleaner cars, trucks, and freight movement, utilizing cleaner, renewable energy, and strategies to reduce CH₄ emissions from agricultural and other wastes.

The 2017 Scoping Plan establishes a new emissions limit of 260 MMTCO₂e for the year 2030, which corresponds to a 40% decrease in 1990 levels by 2030 (36).

California's climate strategy would require contributions from all sectors of the economy, including the land base, and would include enhanced focus on zero and near-zero emission (ZE/NZE) vehicle technologies; continued investment in renewables, including solar roofs, wind, and other distributed generation; greater use of low carbon fuels; integrated land conservation and development strategies; coordinated efforts to reduce emissions of short-lived climate pollutants (CH₄, black carbon, and fluorinated gases); and an increased focus on integrated land use planning to support livable, transit-connected communities and conservation of agricultural and other lands. Requirements for direct GHG reductions at refineries would further support air quality co-benefits in neighborhoods, including in disadvantaged communities historically located adjacent to these large stationary sources, as well as efforts with California's local air pollution control and air quality management districts (air districts) to tighten emission limits on a broad spectrum of industrial sources. Major elements of the *2017 Scoping Plan* framework include:

- Implementing and/or increasing the standards of the Mobile Source Strategy, which include increasing zero-emission vehicles (ZEV) buses and trucks.
- LCFS, with an increased stringency (18% by 2030).
- Implementing SB 350, which expands the RPS to 50% RPS and doubles energy efficiency savings by 2030.
- California Sustainable Freight Action Plan, which improves freight system efficiency, utilizes near-zero emissions technology, and deployment of ZEV trucks.
- Implementing the proposed Short-Lived Climate Pollutant Strategy (SLPS), which focuses on reducing CH₄ and HCF emissions by 40% and anthropogenic black carbon emissions by 50% by year 2030.
- Continued implementation of SB 375.
- Post-2020 Cap-and-Trade Program that includes declining caps.
- 20% reduction in GHG emissions from refineries by 2030.
- Development of a Natural and Working Lands Action Plan to secure California's land base as a net carbon sink.

Note, however, that the 2017 Scoping Plan acknowledges that:

"[a]chieving net zero increases in GHG emissions, resulting in no contribution to GHG impacts, may not be feasible or appropriate for every project, however, and the inability of a project to mitigate its GHG emissions to net zero does not imply the project results in a substantial contribution to the cumulatively significant environmental impact of climate change under CEQA."

In addition to the statewide strategies listed above, the 2017 Scoping Plan also identifies local governments as essential partners in achieving the State's long-term GHG reduction goals and identifies local actions to reduce GHG emissions. As part of the recommended actions, CARB recommends that local governments achieve a community-wide goal to achieve emissions of no more than 6 metric tons of CO₂e (MTCO₂e) or less per capita by 2030 and 2 MTCO₂e or less per capita by 2050. For CEQA projects, CARB states that lead agencies may develop evidence-based bright-line numeric thresholds—consistent with the 2017 Scoping Plan and the State's long-term GHG goals—and projects with emissions over that amount may be required to incorporate onsite design features and MMs that avoid or minimize project emissions to the degree feasible; or a performance-based metric using a CAP or other plan to reduce GHG emissions is appropriate.

According to research conducted by the Lawrence Berkeley National Laboratory (LBNL) and supported by CARB, California, under its existing and proposed GHG reduction policies, could achieve the 2030 goals under SB 32. The research utilized a new, validated model known as the California LBNL GHG Analysis of Policies Spreadsheet (CALGAPS), which simulates GHG and criteria pollutant emissions in California from 2010 to 2050 in accordance to existing and future GHG-reducing policies. The CALGAPS model showed that by 2030, emissions could range from 211 to 428 MTCO₂e per year (MTCO₂e/yr), indicating that "even if all modeled policies are not implemented, reductions could be sufficient to reduce emissions 40% below the 1990 level [of SB 32]." CALGAPS analyzed emissions through 2050 even though it did not generally account for policies that might be put in place after 2030. Although the research indicated that the emissions would not meet the State's 80% reduction goal by 2050, various combinations of policies could allow California's cumulative emissions to remain very low through 2050 (37) (38).

CAP-AND-TRADE PROGRAM

The 2017 Scoping Plan identifies a Cap-and-Trade Program as one of the key strategies for California to reduce GHG emissions. According to CARB, a cap-and-trade program would help put California on the path to meet its goal of achieving a 40% reduction in GHG emissions from 1990 levels by 2030. Under cap-and-trade, an overall limit on GHG emissions from capped sectors is established, and facilities subject to the cap would be able to trade permits to emit GHGs within the overall limit.

CARB adopted a California Cap-and-Trade Program pursuant to its authority under AB 32. The Cap-and-Trade Program is designed to reduce GHG emissions from regulated entities by more than 16% between 2013 and 2020, and by an additional 40% by 2030. The statewide cap for GHG emissions from the capped sectors (e.g., electricity generation, petroleum refining, and cement production) commenced in 2013 and would decline over time, achieving GHG emission reductions throughout the program's duration.

Covered entities that emit more than 25,000 MTCO₂e/yr must comply with the Cap-and-Trade Program. Triggering of the 25,000 MTCO₂e/yr "inclusion threshold" is measured against a subset of emissions reported and verified under the California Regulation for the Mandatory Reporting of GHG Emissions (Mandatory Reporting Rule or "MRR").

Under the Cap-and-Trade Program, CARB issues allowances equal to the total amount of allowable emissions over a given compliance period and distributes these to regulated entities. Covered entities are allocated free allowances in whole or part (if eligible), and may buy allowances at auction, purchase allowances from others, or purchase offset credits. Each covered entity with a compliance obligation is required to surrender "compliance instruments" for each MTCO₂e of GHG they emit. There also are requirements to surrender compliance instruments covering 30% of the prior year's compliance obligation by November of each year (39).

The Cap-and-Trade Program provides a firm cap, which provides the highest certainty of achieving the 2030 target. An inherent feature of the Cap-and-Trade program is that it does not guarantee GHG emissions reductions in any discrete location or by any particular source. Rather, GHG emissions reductions are only guaranteed on an accumulative basis. As summarized by CARB in the *First Update to the Climate Change Scoping Plan*:

"The Cap-and-Trade Regulation gives companies the flexibility to trade allowances with others or take steps to cost-effectively reduce emissions at their own facilities. Companies that emit more have to turn in more allowances or other compliance instruments. Companies that can cut their GHG emissions have to turn in fewer allowances. But as the cap declines, aggregate emissions must be reduced. In other words, a covered entity theoretically could increase its GHG emissions every year and still comply with the Cap-and-Trade Program if there is a reduction in GHG emissions from other covered entities. Such a focus on aggregate GHG emissions is considered appropriate because climate change is a global phenomenon, and the effects of GHG emissions are considered cumulative." (40)

The Cap-and-Trade Program covers approximately 80% of California's GHG emissions (36). The Cap-and-Trade Program covers the GHG emissions associated with electricity consumed in California, whether generated in-state or imported. Accordingly, GHG emissions associated with CEQA projects' electricity usage are covered by the Cap-and-Trade Program. The Cap-and-Trade Program also covers fuel suppliers (natural gas and propane fuel providers and transportation fuel providers) to address emissions from such fuels and from combustion of other fossil fuels not directly covered at large sources in the Program's first compliance period. The Cap-and-Trade Program covers the GHG emissions associated with the combustion of transportation fuels in California, whether refined in-state or imported.

2022 CARB SCOPING PLAN

On December 15, 2022, CARB adopted the 2022 Scoping Plan for Achieving Carbon Neutrality (2022 Scoping Plan) (41). The 2022 Scoping Plan builds on the 2017 Scoping Plan as well as the requirements set forth by AB 1279, which directs the state to become carbon neutral no later than 2045. To achieve this statutory objective, the 2022 Scoping Plan lays out how California can

reduce GHG emissions by 85% below 1990 levels and achieve carbon neutrality by 2045. The Scoping Plan scenario to do this is to "deploy a broad portfolio of existing and emerging fossil fuel alternatives and clean technologies, and align with statutes, Executive Orders, Board direction, and direction from the governor." The 2022 Scoping Plan sets one of the most aggressive approaches to reach carbon neutrality in the world. Unlike the 2017 Scoping Plan, CARB no longer includes a numeric per capita threshold and instead advocates for compliance with a local GHG reduction strategy (CAP) consistent with *CEQA Guidelines* section 15183.5.

The key elements of the 2022 CARB Scoping Plan focus on transportation - the regulations that will impact this sector are adopted and enforced by CARB on vehicle manufacturers and outside the jurisdiction and control of local governments. As stated in the Plan's executive summary:

"The major element of this unprecedented transformation is the aggressive reduction of fossil fuels wherever they are currently used in California, building on and accelerating carbon reduction programs that have been in place for a decade and a half. That means rapidly moving to zero-emission transportation; electrifying the cars, buses, trains, and trucks that now constitute California's single largest source of planet-warming pollution."

"[A]pproval of this plan catalyzes a number of efforts, including the development of new regulations as well as amendments to strengthen regulations and programs already in place, not just at CARB but across state agencies."

Under the 2022 Scoping Plan, the State will lead efforts to meet the 2045 carbon neutrality goal through implementation of the following objectives:

- Reimagine roadway projects that increase VMT in a way that meets community needs and reduces the need to drive.
- Double local transit capacity and service frequencies by 2030.
- Complete the High-Speed Rail (HSR) System and other elements of the intercity rail network by 2040.
- Expand and complete planned networks of high-quality active transportation infrastructure.
- Increase availability and affordability of bikes, e-bikes, scooters, and other alternatives to lightduty vehicles, prioritizing needs of underserved communities.
- Shift revenue generation for transportation projects away from the gas tax into more durable sources by 2030.
- Authorize and implement roadway pricing strategies and reallocate revenues to equitably improve transit, bicycling, and other sustainable transportation choices.
- Prioritize addressing key transit bottlenecks and other infrastructure investments to improve transit operational efficiency over investments that increase VMT.
- Develop and implement a statewide transportation demand management (TDM) framework with VMT mitigation requirements for large employers and large developments.
- Prevent uncontrolled growth of autonomous vehicle (AV) VMT, particularly zero-passenger miles.
- Channel new mobility services towards pooled use models, transit complementarity, and lower VMT outcomes.

- Establish an integrated statewide system for trip planning, booking, payment, and user accounts that enables efficient and equitable multimodal systems.
- Provide financial support for low-income and disadvantaged Californians' use of transit and new mobility services.
- Expand universal design features for new mobility services.
- Accelerate infill development in existing transportation-efficient places and deploy strategic resources to create more transportation-efficient locations.
- Encourage alignment in land use, housing, transportation, and conservation planning in adopted regional plans (RTP/SCS and RHNA) and local plans (e.g., general plans, zoning, and local transportation plans).
- Accelerate production of affordable housing in forms and locations that reduce VMT and affirmatively further fair housing policy objectives.
- Reduce or eliminate parking requirements (and/or enact parking maximums, as appropriate) and promote redevelopment of excess parking, especially in infill locations.
- Preserve and protect existing affordable housing stock and protect existing residents and businesses from displacement and climate risk.

Included in the 2022 Scoping Plan is a set of Local Actions (Appendix D to the 2022 Scoping Plan) aimed at providing local jurisdictions with tools to reduce GHGs and assist the state in meeting the ambitious targets set forth in the 2022 Scoping Plan. Appendix D to the 2022 Scoping Plan includes a section on evaluating plan-level and project-level alignment with the State's Climate Goals in CEQA GHG analyses. In this section, CARB identifies several recommendations and strategies that should be considered for new development in order to determine consistency with the 2022 Scoping Plan. Notably, this section is focused on Residential and Mixed-Use Projects, in fact CARB states in Appendix D (page 4): "...focuses primarily on climate action plans (CAPs) and local authority over new residential development. It does not address other land use types (e.g., industrial) or air permitting."

Additionally on Page 21 in Appendix D, CARB states: "The recommendations outlined in this section apply only to residential and mixed-use development project types. California currently faces both a housing crisis and a climate crisis, which necessitates prioritizing recommendations for residential projects to address the housing crisis in a manner that simultaneously supports the State's GHG and regional air quality goals. CARB plans to continue to explore new approaches for other land use types in the future." As such, it would be inappropriate to apply the requirements contained in Appendix D of the 2022 Scoping Plan to any land use types other than residential or mixed-use residential development.

2.7.3.2 EXECUTIVE ORDERS RELATED TO GHG EMISSIONS

California's Executive Branch has taken several actions to reduce GHGs through the use of Executive Orders. Although not regulatory, they set the tone for the state and guide the actions of state agencies.

EXECUTIVE ORDER S-3-05

California Governor Arnold Schwarzenegger announced on June 1, 2005, through Executive Order S-3-05, the following reduction targets for GHG emissions:

- By 2010, reduce GHG emissions to 2000 levels.
- By 2020, reduce GHG emissions to 1990 levels.
- By 2050, reduce GHG emissions to 80% below 1990 levels.

The 2050 reduction goal represents what some scientists believe is necessary to reach levels that would stabilize the climate. The 2020 goal was established to be a mid-term target. Because this is an executive order, the goals are not legally enforceable for local governments or the private sector.

EXECUTIVE ORDER S-01-07 (LCFS)

Governor Schwarzenegger signed Executive Order S-01-07 on January 18, 2007. The order mandates that a statewide goal shall be established to reduce the carbon intensity of California's transportation fuels by at least 10% by 2020. CARB adopted the LCFS on April 23, 2009.

After a series of legal changes, in order to address the Court ruling, CARB was required to bring a new LCFS regulation to the Board for consideration in February 2015. The proposed LCFS regulation was required to contain revisions to the 2010 LCFS as well as new provisions designed to foster investments in the production of the low-carbon intensity fuels, offer additional flexibility to regulated parties, update critical technical information, simplify and streamline program operations, and enhance enforcement. On November 16, 2015, the Office of Administrative Law (OAL) approved the Final Rulemaking Package. The new LCFS regulation became effective on January 1, 2016.

In 2018, CARB approved amendments to the regulation, which included strengthening the carbon intensity benchmarks through 2030 in compliance with the SB 32 GHG emissions reduction target for 2030. The amendments included crediting opportunities to promote zero emission vehicle adoption, alternative jet fuel, carbon capture and sequestration, and advanced technologies to achieve deep decarbonization in the transportation sector (42).

EXECUTIVE ORDER S-13-08

Executive Order S-13-08 states that "climate change in California during the next century is expected to shift precipitation patterns, accelerate sea level rise and increase temperatures, thereby posing a serious threat to California's economy, to the health and welfare of its population and to its natural resources." Pursuant to the requirements in the Order, the 2009 California Climate Adaptation Strategy (CNRA 2009) was adopted, which is the "...first statewide, multi-sector, region-specific, and information-based climate change adaptation strategy in the United States." Objectives include analyzing risks of climate change in California, identifying, and exploring strategies to adapt to climate change, and specifying a direction for future research.

EXECUTIVE ORDER B-30-15

On April 29, 2015, Governor Brown issued an executive order to establish a California GHG reduction target of 40% below 1990 levels by 2030. The Governor's executive order aligned California's GHG reduction targets with those of leading international governments ahead of the U.N. Climate Change Conference in Paris late 2015. The Order sets a new interim statewide GHG emission reduction target to reduce GHG emissions to 40% below 1990 levels by 2030 in order to ensure California meets its target of reducing GHG emissions to 80% below 1990 levels by 2050 and directs CARB to update the *2017 Scoping Plan* to express the 2030 target in terms of MMTCO₂e. The Order also requires the state's climate adaptation plan to be updated every three years, and for the State to continue its climate change research program, among other provisions. As with Executive Order S-3-05, this Order is not legally enforceable as to local governments and the private sector. Legislation that would update AB 32 to make post 2020 targets and requirements a mandate is in process in the State Legislature.

EXECUTIVE ORDER B-55-18 AND SB 100

SB 100 and Executive Order B-55-18 were signed by Governor Brown on September 10, 2018. Under the existing RPS, 25% of retail sales of electricity are required to be from renewable sources by December 31, 2016, 33% by December 31, 2020, 40% by December 31, 2024, 45% by December 31, 2027, and 50% by December 31, 2030. SB 100 raises California's RPS requirement to 50% renewable resources target by December 31, 2026, and to achieve a 60% target by December 31, 2030. SB 100 also requires that retail sellers and local publicly owned electric utilities procure a minimum quantity of electricity products from eligible renewable energy resources so that the total kilowatt hours (kWh) of those products sold to their retail end-use customers achieve 44% of retail sales by December 31, 2024, 52% by December 31, 2027, and 60% by December 31, 2030. In addition to targets under AB 32 and SB 32, Executive Order B-55-18 establishes a carbon neutrality goal for the state of California by 2045; and sets a goal to maintain net negative emissions thereafter. The Executive Order directs the California Natural Resources Agency (CNRA), California EPA (CalEPA), the California Department of Food and Agriculture (CDFA), and CARB to include sequestration targets in the Natural and Working Lands Climate Change Implementation Plan consistent with the carbon neutrality goal.

2.7.3.3 CALIFORNIA REGULATIONS AND BUILDING CODES

California has a long history of adopting regulations to improve energy efficiency in new and remodeled buildings. These regulations have kept California's energy consumption relatively flat even with rapid population growth.

TITLE 20 CCR Sections 1601 ET SEQ. — APPLIANCE EFFICIENCY REGULATIONS

The Appliance Efficiency Regulations regulate the sale of appliances in California. The Appliance Efficiency Regulations include standards for both federally regulated appliances and non-federally regulated appliances. 23 categories of appliances are included in the scope of these regulations. The standards within these regulations apply to appliances that are sold or offered for sale in California, except those sold wholesale in California for final retail sale outside the state

and those designed and sold exclusively for use in recreational vehicles (RV) or other mobile equipment (CEC 2012).

TITLE 24 ENERGY EFFICIENCY STANDARDS AND CALIFORNIA GREEN BUILDING STANDARDS

California Code of Regulations (CCR) Title 24 Part 6: The California Energy Code was first adopted in 1978 in response to a legislative mandate to reduce California's energy consumption.

The standards are updated periodically to allow consideration and possible incorporation of new energy efficient technologies and methods. CCR, Title 24, Part 11: California Green Building Standards Code (CALGreen) is a comprehensive and uniform regulatory code for all residential, commercial, and school buildings that went in effect on August 1, 2009, and is administered by the California Building Standards Commission.

CALGreen is updated on a regular basis, with the most recent approved update consisting of the 2022 California Green Building Code Standards that became effective on January 1, 2023. The CEC anticipates that the 2022 energy code will provide \$1.5 billion in consumer benefits and reduce GHG emissions by 10 million metric tons (43). The Project would be required to comply with the applicable standards in place at the time plan check submittals are made. These require, among other items (44):

RESIDENTIAL MANDATORY MEASURES

- Electric vehicle (EV) charging stations. New construction shall comply with Section 4.106.4.1, 4.106.4.2, 4.106.4.3, to facilitate future installation and use of EV chargers. Electric vehicle supply equipment (EVSE) shall be installed in accordance with the *California Electrical Code*, Article 625. (4.106.4).
 - New one- and two-family dwellings and town-houses with attached private garages. For each dwelling unit, install a listed raceway to accommodate a dedicated 208/240-volt branch circuit. The raceway shall not be less than trade size 1 (nominal 1-inch inside diameter). The raceway shall originate at the main service or subpanel and shall terminate into a listed cabinet, box or other enclosure in close proximity to the proposed location of an EV charger. Raceways are required to be continuous at enclosed, inaccessible or concealed areas and spaces. The service panel and/or subpanel shall provide capacity to install a 40-ampere 208/240-volt minimum dedicated branch circuit and space(s) reserved to permit installation of a branch circuit overcurrent protective device.
 - New hotels and motels. All newly constructed hotels and motels shall provide EV spaces capable of supporting future installation of EVSE. The construction documents shall identify the location of the EV spaces. The number of required EV spaces shall be based on the total number of parking spaces provided for all types of parking facilities in accordance with Table 4.106.4.3.1.
- Water conserving plumbing fixtures and fittings. Plumbing fixtures (water closets and urinals) and fittings (faucets and showerheads) shall comply with Sections 4.303.1.1, 4.303.1.2, 4.303.1.3, and 4.303.1.4.
- Outdoor potable water use in landscape areas. Residential developments shall comply with a local
 water efficient landscape ordinance or the current California Department of Water Resources'
 Model Water Efficient Landscape Ordinance (MWELO), whichever is more stringent.

- Operation and maintenance manual. At the time of final inspection, a manual, compact disc, webbased reference or other media acceptable to the enforcing agency which includes all of the following shall be placed in the building:
 - Directions to the owner or occupant that the manual shall remain with the building throughout the life cycle of the structure.
 - Operations and maintenance instructions for the following:
 - Equipment and appliances, including water-saving devices and systems, HVAC systems, photovoltaic systems, EV chargers, water-heating systems and other major appliances and equipment.
 - Roof and yard drainage, including gutter and downspouts.
 - Space conditioning systems, including condensers and air filters.
 - Landscape irrigation systems.
 - Water reuse systems.
 - o Information from local utility, water and waste recovery providers on methods to further reduce future resource consumption, including recycling programs and locations.
 - Public transportation and/or carpool options available in the area.
 - Educational material on the positive impacts of an interior relative humidity between 30-60% and what methods occupants may use to maintain the relative humidity level in that range.
 - o Information about water-conserving landscape and irrigation design and controllers which conserve water.
 - o Instructions for maintaining gutters and downspouts and the importance of diverting water at least 5 feet away from the foundation.
 - o Information about state solar energy and incentive programs available.
 - A copy of all special inspection verifications required by the enforcing agency of this code.
 - Information from CALFIRE on maintenance of defensible space around residential structures.
- Any installed gas fireplace shall be direct-vent sealed-combustion type. Any installed woodstove
 or pellet stove shall comply with U.S. EPA New Source Performance Standards (NSPS) emission
 limits as applicable, and shall have a permanent label indicating they are certified to meet the
 emission limits. Woodstoves, pellet stoves and fireplaces shall also comply with applicable local
 ordinances.
- Paints and coatings. Architectural paints and coatings shall comply with VOC limits in Table 1 of the CARB Architectural Suggested Control Measure, as shown in Table 4.504.3, unless more stringent local limits apply. The VOC content limit for coatings that do not meet the definitions for the specialty coatings categories listed in Table 4.504.3 shall be determined by classifying the coating as a Flat, Nonflat, or Nonflat-high Gloss coating, based on its glass, as defined in subsections 4.21, 4.36, and 4.37 of the 2007 CARB, Suggested Control Measure, and the corresponding Flat, Nonflat, Nonflat-high Gloss VOC limit in Table 4.504.3 shall apply.

NONRESIDENTIAL MANDATORY MEASURES

- Short-term bicycle parking. If the new project or an additional alteration is anticipated to generate visitor traffic, provide permanently anchored bicycle racks within 200 feet of the visitors' entrance, readily visible to passers-by, for 5% of new visitor motorized vehicle parking spaces being added, with a minimum of one two-bike capacity rack (5.106.4.1.1).
- Long-term bicycle parking. For new buildings with tenant spaces that have 10 or more tenant-occupants, provide secure bicycle parking for 5% of the tenant-occupant vehicular parking spaces with a minimum of one bicycle parking facility (5.106.4.1.2).
- EV charging stations. New construction shall facilitate the future installation of EV supply equipment. The compliance requires empty raceways for future conduit and documentation that the electrical system has adequate capacity for the future load. The number of spaces to be provided for is contained in Table 5.106. 5.3.3 (5.106.5.3). Additionally, Table 5.106.5.4.1 specifies requirements for the installation of raceway conduit and panel power requirements for medium- and heavy-duty EV supply equipment for warehouses, grocery stores, and retail stores.
- Outdoor light pollution reduction. Outdoor lighting systems shall be designed to meet the backlight, uplight and glare ratings per Table 5.106.8 (5.106.8).
- Construction waste management. Recycle and/or salvage for reuse a minimum of 65% of the nonhazardous construction and demolition waste in accordance with Section 5.408.1.1. 5.405.1.2, or 5.408.1.3; or meet a local construction and demolition waste management ordinance, whichever is more stringent (5.408.1).
- Excavated soil and land clearing debris. 100% of trees, stumps, rocks and associated vegetation and soils resulting primarily from land clearing shall be reuse or recycled. For a phased project, such material may be stockpiled on site until the storage site is developed (5.408.3).
- Recycling by Occupants. Provide readily accessible areas that serve the entire building and are
 identified for the depositing, storage, and collection of non-hazardous materials for
 recycling, including (at a minimum) paper, corrugated cardboard, glass, plastics, organic
 waste, and metals or meet a lawfully enacted local recycling ordinance, if more restrictive
 (5.410.1).
- Water conserving plumbing fixtures and fittings. Plumbing fixtures (water closets and urinals) and fittings (faucets and showerheads) shall comply with the following:
 - Water Closets. The effective flush volume of all water closets shall not exceed
 1.28 gallons per flush (5.303.3.1)
 - Urinals. The effective flush volume of wall-mounted urinals shall not exceed
 0.125 gallons per flush (5.303.3.2.1). The effective flush volume of floor- mounted or other urinals shall not exceed 0.5 gallons per flush (5.303.3.2.2).
 - Showerheads. Single showerheads shall have a minimum flow rate of not more than 1.8 gallons per minute and 80 psi (5.303.3.3.1). When a shower is served by more than one showerhead, the combine flow rate of all showerheads and/or other shower outlets controlled by a single valve shall not exceed 1.8 gallons per minute at 80 psi (5.303.3.3.2).

- Faucets and fountains. Nonresidential lavatory faucets shall have a maximum flow rate of not more than 0.5 gallons per minute at 60 psi (5.303.3.4.1). Kitchen faucets shall have a maximum flow rate of not more than 1.8 gallons per minute of 60 psi (5.303.3.4.2). Wash fountains shall have a maximum flow rate of not more than 1.8 gallons per minute (5.303.3.4.3). Metering faucets shall not deliver more than 0.20 gallons per cycle (5.303.3.4.4). Metering faucets for wash fountains shall have a maximum flow rate not more than 0.20 gallons per cycle (5.303.3.4.5).
- Outdoor potable water uses in landscaped areas. Nonresidential developments shall comply
 with a local water efficient landscape ordinance or the current California Department of
 Water Resources' Model Water Efficient Landscape Ordinance (MWELO), whichever is more
 stringent (5.304.1).
- Water meters. Separate submeters or metering devices shall be installed for new buildings or additions in excess of 50,000 sf or for excess consumption where any tenant within a new building or within an addition that is project to consume more than 1,000 gallons per day (GPD) (5.303.1.1 and 5.303.1.2).
- Outdoor water uses in rehabilitated landscape projects equal or greater than 2,500 sf. Rehabilitated landscape projects with an aggregate landscape area equal to or greater than 2,500 sf requiring a building or landscape permit (5.304.3).
- Commissioning. For new buildings 10,000 sf and over, building commissioning shall be
 included in the design and construction processes of the building project to verify that the
 building systems and components meet the owner's or owner representative's project
 requirements (5.410.2).

SB 97 AND THE **CEQA GUIDELINES UPDATE**

Passed in August 2007, SB 97 added Section 21083.05 to the Public Resources Code. The code states "(a) On or before July 1, 2009, the Office of Planning and Research (OPR) shall prepare, develop, and transmit to the Resources Agency guidelines for the mitigation of GHG emissions or the effects of GHG emissions as required by this division, including, but not limited to, effects associated with transportation or energy consumption. (b) On or before January 1, 2010, the Resources Agency shall certify and adopt guidelines prepared and developed by the OPR pursuant to subdivision (a)."

In 2012, Public Resources Code Section 21083.05 was amended to state:

"The Office of Planning and Research and the Natural Resources Agency shall periodically update the guidelines for the mitigation of greenhouse gas emissions or the effects of greenhouse gas emissions as required by this division, including, but not limited to, effects associated with transportation or energy consumption, to incorporate new information or criteria established by the State Air Resources Board pursuant to Division 25.5 (commencing with Section 38500) of the Health and Safety Code."

On December 28, 2018, the Natural Resources Agency announced the OAL approved the amendments to the *CEQA Guidelines* for implementing CEQA. The CEQA Amendments provide guidance to public agencies regarding the analysis and mitigation of the effects of GHG emissions

in CEQA documents. The CEQA Amendments fit within the existing CEQA framework by amending existing CEQA Guidelines to reference climate change.

Section 15064.4 was added the *CEQA Guidelines* and states that in determining the significance of a project's GHG emissions, the lead agency should focus its analysis on the reasonably foreseeable incremental contribution of the project's emissions to the effects of climate change. A project's incremental contribution may be cumulatively considerable even if it appears relatively insignificant compared to statewide, national, or global emissions. The agency's analysis should consider a timeframe that is appropriate for the project. The agency's analysis also must reasonably reflect evolving scientific knowledge and state regulatory schemes. Additionally, a lead agency may use a model or methodology to estimate GHG emissions resulting from a project. The lead agency has discretion to select the model or methodology it considers most appropriate to enable decision makers to intelligently take into account the project's incremental contribution to climate change. The lead agency must support its selection of a model or methodology with substantial evidence. The lead agency should explain the limitations of the particular model or methodology selected for use (45).

2.7.4 REGIONAL

The project is within the SCAB, which is under the jurisdiction of the SCAQMD.

SCAQMD

SCAQMD is the agency responsible for air quality planning and regulation in the SCAB. The SCAQMD addresses the impacts to climate change of projects subject to SCAQMD permit as a lead agency, if they are the only agency having discretionary approval for the project, and acts as a responsible agency when a land use agency must also approve discretionary permits for the project. The SCAQMD acts as an expert commenting agency for impacts to air quality. This expertise carries over to GHG emissions, so the agency helps local land use agencies through the development of models and emission thresholds that can be used to address GHG emissions.

In 2008, SCAQMD formed a Working Group to identify GHG emissions thresholds for land use projects that could be used by local lead agencies in the SCAB. The Working Group developed several different options that are contained in the SCAQMD Draft Guidance Document – Interim CEQA GHG Significance Threshold, which could be applied by lead agencies. The working group has not provided additional guidance since release of the interim guidance in 2008. The SCAQMD Board has not approved the thresholds; however, the Guidance Document provides substantial evidence supporting the approaches to significance of GHG emissions that can be considered by the lead agency in adopting its own threshold. The proposed Project relies on SCAQMD's Tier 4 threshold as follows:

- Tier 4 has the following options:
 - Option 1: Reduce Business-as-Usual (BAU) emissions by a certain percentage; this percentage is currently undefined.
 - Option 2: Early implementation of applicable AB 32 Scoping Plan measures

- Option 3: 2020 target for service populations (SP), which includes residents and employees: 4.8 MTCO₂e per SP per year for projects and 6.6 MTCO₂e per SP per year for plans;
- Option 3, 2035 target: 3.0 MTCO₂e per SP per year for projects and 4.1 MTCO₂e per SP per year for plans

The SCAQMD's interim thresholds used the Executive Order S-3-05-year 2050 goal as the basis for the Tier 4 screening level. Achieving the Executive Order's objective would contribute to worldwide efforts to cap CO₂ concentrations at 450 ppm, thus stabilizing global climate.

2.7.5 LOCAL

CITY OF REDLANDS CLIMATE ACTION PLAN (CAP)

The City of Redlands CAP was designed to reinforce the City of Redlands commitment to reducing greenhouse gas (GHG) emissions and demonstrate compliance with the State of California's GHG emission reduction standards (46). The CAP includes goals and policies to promote energy efficiency, waste reduction, and resource conservation and recycling. The CAP's GHG emission targets and goals were based on meeting the goals in EO B-30-15 and SB 32 and following the guidance established in the 2017 Scoping Plan. The CAP used the 2017 Scoping Plan recommended Plan Level emissions target of 6.0 MTCO₂e per capita per year for 2030. Based on the CAP analysis, the City of Redlands will achieve the 2030 target based on State actions and existing development standards and would not require any specific measures to reduce GHG emissions. Regardless, the CAP does recommend some actions including encourage the development of solar photovoltaic systems on residential and non-residential development, increase energy efficiency 5% over 2016 standards, increase the use of high efficiency lighting, and reduce the intensity of GHG emissions associated with water delivery and treatment.

This page intentionally left blank

3 PROJECT GHG IMPACT

3.1 Introduction

The Project has been evaluated to determine if it will result in a significant GHG impact. The significance of these potential impacts is described in the following sections.

3.2 STANDARDS OF SIGNIFICANCE

The criteria used to determine the significance of potential Project-related GHG impacts are taken from the Initial Study Checklist in Appendix G of the State *CEQA Guidelines* (14 CCR of Regulations §§15000, et seq.). Based on these thresholds, a project would result in a significant impact related to GHG if it would (1):

- Generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment?
- Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of GHGs?

DISCUSSION ON ESTABLISHMENT OF SIGNIFICANCE THRESHOLDS

The SCAQMD defines the Service Population (SP) as the total residents and employees associated with a project. The origin of the SP is based on CARB's 2008 Scoping Plan. The 2008 Scoping Plan identified that based on the GHG emissions inventories for the state, the people of California generate approximately 14 tons of GHG emissions per capita and would need to reduce annual emissions to approximately 10 tons per capita in order to meet the GHG reduction target of AB 32. Because people who live in California generally work in California, the SP metric did not include employees. As CEQA significance thresholds were being determined by air districts, the air districts considered applying this efficiency metric to their air district boundaries. Consistent with methodology provided by the Regional Targets Advisory Committee (RTAC) as part of the SB 375 target setting discussions, the definition of SP was amended to include employees in addition to residents. This is because the transportation sector is the primary source of project-related GHG emissions; and unlike the state as a whole, people who work in one county/air district may not live in the same county/ air district boundary. Also, people who live in a county/air district boundary would also have other trip ends such as school, parks, and retail uses. As such, the air district/county boundary as a whole did not take into account other users within the site.

Relevant to the proposed Project, the SCAQMD Tier 4 Option 3 is to utilize an efficiency target. The SCAQMD has proposed targets for project-level and plan-level analysis. At the September 2010 working group meeting the SCAQMD recommended a project-level efficiency target of 4.1 MTCO₂e/SP as a 2035 target³.

³ It should be noted that SCAQMD identifies a plan-level threshold of 4.1 MTCO2e per SP. As a conservative measure, the Project utilizes the 3.0 MTCO2e per SP as the basis of establishing long-term thresholds for buildout conditions.

14992-06 GHG Report

The calculations behind this option are based on a 40% reduction by the SB 375 target date of 2020 and the same inventory calculated by CARB. The 2020 4.8 MT/SP target is based on the same statewide 2020 GHG inventory in the CARB *Scoping Plan*, i.e., 295,530,000 MTCO₂e/yr. To derive the project level SP of 4.8 metric ton, SCAQMD took the 2020 statewide GHG reduction target for land use only $(295,530,000 \text{ MTCO}_2\text{e/yr})$ and divided it by the total 2020 statewide population plus the total statewide employment for land use only (44,135,923 + 17,064,489) (i.e., $(295,530,000 \text{ MTCO}_2\text{e/yr})/(44,135,923 + 17,064,489) = 4.8 \text{ MTCO}_2\text{e/yr}$).

Overall, GHG reductions by the SB 375 target date of 2035 would be approximately 40 percent. This 40 percent reduction was applied to the 2020 targets, resulting in an efficiency threshold for plans of 4.1 MTCO2e/yr and an efficiency threshold at the project level of 3.0 MTCO2e/yr. Thus, SCAQMD's threshold is another metric for assessing compliance with AB 32, just based on using numbers attributable to certain sectors and trying to break down the analysis to a finer grain based on a per person methodology associated with land use-related sectors.

This approach is a widely accepted screening threshold used by numerous cities in the basin and is based on the SCAQMD staff's proposed GHG screening threshold for stationary source emissions for non-industrial projects, as described in the SCAQMD's *Interim CEQA GHG Significance Threshold for Stationary Sources, Rules and Plans*. The SCAQMD's *Interim CEQA GHG Significance Threshold for Stationary Sources, Rules and Plans* identifies a screening threshold to determine whether additional analysis is required (47). As noted by the SCAQMD:

inthe...screening level for stationary sources is based on an emission capture rate of 90. percent for all new or modified projects...the policy objective of [SCAQMD's] recommended interim GHG significance threshold proposal is to achieve an emission capture rate of 90 percent of all new or modified stationary source projects. A GHG significance threshold based on a 90 percent emission capture rate may be more appropriate to address the long-term adverse impacts associated with global climate change because most projects will be required to implement GHG reduction measures. Further, a 90 percent emission capture rate sets the emission threshold low enough to capture a substantial fraction of future stationary source projects that will be constructed to accommodate future statewide population and economic growth, while setting the emission threshold high enough to exclude small projects that will in aggregate contribute a relatively small fraction of the cumulative statewide GHG emissions. This assertion is based on the fact that [SCAQMD] staff estimates that these GHG emissions would account for slightly less than one percent of future 2050 statewide GHG emissions target (85 [MMTCO₂e/yr]). In addition, these small projects may be subject to future applicable GHG control regulations that would further reduce their overall future contribution to the statewide GHG inventory. Finally, these small sources are already subject to [Best Available Control Technology] (BACT) for criteria pollutants and are more likely to be single-permit facilities, so they are more likely to have few opportunities readily available to reduce GHG emissions from other parts of their facility." (47)

Although the SCAQMD's draft significance criteria have not been adopted, the City has determined that the SCAQMD's project-level efficiency threshold methodology can be used to set an appropriate significance criterion by which to determine whether the project emits a

significant amount of GHG. As such, based on SCAQMD guidance, the SP threshold for the Project's buildout year of 2035 is 3.0 MTCO₂e/yr.

3.3 Models Employed To Analyze GHGs

3.3.1 CALIFORNIA EMISSIONS ESTIMATOR MODEL (CALEEMOD)

In August 2023 California Air Pollution Control Officers Association (CAPCOA) in conjunction with other California air districts, including SCAQMD, released the latest version of the CalEEMod Version 2022.1.1.24. The purpose of this model is to calculate construction-source and operational-source criteria pollutants and GHG emissions from direct and indirect sources; and quantify applicable air quality and GHG reductions achieved from mitigation measures (48). Accordingly, the latest version of CalEEMod has been used for this Project to determine GHG emissions. Output from the model runs for operational activity are provided in Appendix 3.2. CalEEMod includes GHG emissions from the following source categories: construction, area, energy, mobile, waste, water, and refrigerants.

For the Approved uses, 828,349.93-sf of warehouse (commercial/industrial), 828,349.93-sf of retail (commercial/industrial), 111 dwelling units of multi-family housing, 276,170.4-sf of office (commercial), and 276,170.4-sf of retail (commercial) uses were modeled on 116.19 acres. For the Proposed uses, 2,436 dwelling units of multi-family housing and 151,048.46-sf of public/institutional uses were modeled on 116.19 acres.

3.4 LIFE-CYCLE ANALYSIS NOT REQUIRED

A full life-cycle analysis (LCA) for construction and operational activity is not included in this analysis due to the lack of consensus guidance on LCA methodology at this time (49). Life-cycle analysis (i.e., assessing economy-wide GHG emissions from the processes in manufacturing and transporting all raw materials used in the Project development, infrastructure, and on-going operations) depends on emission factors or econometric factors that are not well established for all processes. At this time, an LCA would be extremely speculative and thus has not been prepared.

Additionally, the SCAQMD recommends analyzing direct and indirect project GHG emissions generated within California and not life-cycle emissions because the life-cycle effects from a project could occur outside of California, might not be very well understood, or documented, and would be challenging to mitigate (50). Additionally, the science to calculate life cycle emissions is not yet established or well defined; therefore, SCAQMD has not recommended, and is not requiring, life-cycle emissions analysis.

3.5 CONSTRUCTION EMISSIONS

Construction activities for future implementing developments pursuant to the Project would generate CO₂ and CH₄ emissions. The report *Regional Housing Needs Assessment Rezone Air Quality Impact Analysis Report* (AQIA) contains detailed information regarding Project construction activities (51). As discussed in the AQIA, construction related emissions are expected from the following construction activities:

- Demolition
- Site Preparation
- Grading
- Building Construction
- Paving
- Architectural Coating

Specific construction related criteria pollutant emissions will be quantified in future GHG analyses to be conducted for individual CEQA projects. In addition, for projects that are estimated to exceed the construction emissions significance thresholds established by the SCAQMD (after mitigation), the preparation of an Environmental Impact Report (EIR) would be required (pursuant to CEQA) and an analysis of alternatives and other emissions reduction measures would take place.

Construction-related emissions are speculative and cannot be accurately determined at this stage of the planning process. Therefore, such impacts are too speculative to evaluate (see CEQA Guidelines Section 15145). To the extent that specific projects are known, those projects have already been or would be subjected to their own environmental analysis.

3.6 OPERATIONAL EMISSIONS

Operational activities associated with buildout of the Project will result in emissions of CO_2 , CH_4 , N_2O and R from the following primary sources:

- Area Source Emissions
- Energy Source Emissions
- Mobile Source Emissions
- Water Supply, Treatment, and Distribution
- Solid Waste
- Refrigerants

3.6.1 AREA SOURCE EMISSIONS

LANDSCAPE MAINTENANCE EQUIPMENT

Landscape maintenance equipment would generate emissions from fuel combustion and evaporation of unburned fuel. Equipment in this category would include lawnmowers, shedders/grinders, blowers, trimmers, chain saws, and hedge trimmers used to maintain the landscaping of future developments under the proposed Project. It should be noted that on October 9, 2021, Governor Gavin Newsom signed AB 1346. The bill aims to ban the sale of new gasoline-powered equipment under 25 gross horsepower (known as small off-road engines [SOREs]) by 2024, which is now effective. For purposes of analysis, the emissions associated with landscape maintenance equipment were calculated based on assumptions provided in CalEEMod.

3.6.2 ENERGY SOURCE EMISSIONS

COMBUSTION EMISSIONS ASSOCIATED WITH NATURAL GAS AND ELECTRICITY

GHGs are emitted from buildings as a result of activities for which electricity and natural gas are typically used as energy sources. Combustion of any type of fuel emits CO₂ and other GHGs directly into the atmosphere; these emissions are considered direct emissions associated with a building; the building energy use emissions do not include street lighting. GHGs are also emitted during the generation of electricity from fossil fuels; these emissions are considered to be indirect emissions. Natural gas and electricity usage associated with development pursuant to the proposed Project was calculated by CalEEMod using default parameters.

3.6.3 MOBILE SOURCE EMISSIONS

The proposed Project related GHG emissions derive primarily from vehicle trips generated by development pursuant to the Project, including employee and resident trips to and from the sites associated with the proposed uses. Trip characteristics available from the *Regional Housing Needs Assessment Rezone Trip Generation Assessment* were utilized in this analysis (52).

3.6.4 WATER SUPPLY, TREATMENT AND DISTRIBUTION

Indirect GHG emissions result from the production of electricity used to convey, treat, and distribute water and wastewater. The amount of electricity required to convey, treat, and distribute water depends on the volume of water as well as the sources of the water. Unless otherwise noted, CalEEMod default parameters were used.

3.6.5 SOLID WASTE

The proposed land uses will result in the generation and disposal of solid waste. A percentage of this waste will be diverted from landfills by a variety of means, such as reducing the amount of waste generated, recycling, and/or composting. The remainder of the waste not diverted will be disposed of at a landfill. GHG emissions from landfills are associated with the anaerobic breakdown of material. GHG emissions associated with the disposal of solid waste associated with the proposed Project were calculated by CalEEMod using default parameters.

3.6.6 Refrigerants

Air conditioning (A/C) and refrigeration equipment associated with the building are anticipated to generate GHG emissions. CalEEMod automatically generates a default A/C and refrigeration equipment inventory for each project land use subtype based on industry data from the USEPA (2016b). CalEEMod quantifies refrigerant emissions from leaks during regular operation and routine servicing over the equipment lifetime and then derives average annual emissions from the lifetime estimate. Note that CalEEMod does not quantify emissions from the disposal of refrigeration and A/C equipment at the end of its lifetime. Per 17 CCR 95371, new facilities with air conditioning equipment are prohibited from utilizing refrigerants with a GWP of 150 or

-

⁴ The CalEEMod emissions inventory model does not include indirect emission related to street lighting. Indirect emissions related to street lighting are expected to be negligible and cannot be accurately quantified at this time as there is insufficient information as to the number and type of street lighting that would occur.

greater as of January 1, 2025. As such, it was conservatively assumed that air conditioning systems installed at the residential and commercial portion of the Project would utilize refrigerants with a GWP of 150. Otherwise, GHG emissions associated with refrigerants were calculated by CalEEMod using default parameters.

3.6.7 Service Population

RESIDENTIAL/EMPLOYEES

The maximum development that would occur from buildout of the proposed Project is 2,436 residential units and 151,048.46 SF of public/institutional development. Buildout pursuant to the proposed Project would result in an increase in 2,325 residential units and a decrease of 2,057,992.20 SF of nonresidential development.

Using the Redlands General Plan EIR growth induction rate of 2.65 people per household, buildout of the proposed residential units has the potential generate up to 6,456 residents. Employee generation for the proposed Project was calculated using Table 2.3-6 Projected Non-Residential Buildout (2035) from the Redlands General Plan using the projected Public/Institutional square feet of development and projected jobs creation, which results in a generation of 550 jobs.

Table 3-1 summarizes the growth of buildout of the Approved General Plan Buildout compared to growth induced from the proposed Project. As shown, compared to the Approved General Plan Buildout, the proposed Project would result in a reduction of 1,713 employees and an increase of 6,162 residents.

TABLE 3-1: COMPARISON OF GENERAL PLAN AND PROPOSED PROJECT POPULATION GROWTH

	Approved General Plan Buildout	Proposed Project	Difference (Proposed Project – Approved General Plan Buildout)
Employees	2,263	550	-1,713
Residents	294	6,456	6,162

SCAG Connect SoCal Demographics and Growth Forecast information shows that the City had approximately 25,600 households and approximately 49,400 jobs in 2019. Thus, the City of Redlands has 1.93 jobs for each household. The proposed Project would reduce (improve) the jobs-housing ratio slightly by adding 2,325 residential units and provide a regional beneficial effect of providing the opportunity for housing where employees can easily travel to nearby employment opportunities. Thus, the additional residential units would only result in an increase in residents that would be new to the service population. As shown in Table 3-1, the proposed Project would result in an increase of 6,162 residents at buildout, which is the service population that would be generated by the Project.

3.6.8 EMISSIONS SUMMARY

APPROVED GENERAL PLAN BUILDOUT EMISSIONS

The City Approved General Plan currently designates the 24 Project sites for 1,656,699.86-sf of commercial/industrial, 552,340.90-sf for commercial, and 111 dwelling units for multi-family housing uses. The estimated operational-source GHG emissions from the Approved General Plan Buildout uses are summarized on Table 3-2.

TABLE 3-2: APPROVED GENERAL PLAN BUILDOUT EMISSIONS

Familian Course	Emissions (MT/yr)				
Emission Source	CO ₂	CH ₄	N ₂ O	Refrigerants	Total CO₂e
Mobile Source	39,117.93	2.76	2.67	67.32	40,049.49
Area Source	73.21	0.00	0.00	0.00	73.41
Energy Source	4,790.37	0.44	0.04	0.00	4,813.13
Water Usage	455.87	10.67	0.26	0.00	799.25
Waste	203.19	20.31	0.00	0.00	710.90
Refrigerants	0.00	0.00	0.00	0.59	0.59
Total CO₂e (All Sources)	46,446.76				
Service Population	2,557.00				
Total CO₂e/Service Population	18.16				

Source: CalEEMod output, See Appendix 3.1 for detailed model outputs.

PROPOSED PROJECT EMISSIONS

The annual GHG emissions associated with the proposed Project are summarized in Table 3-2. As shown in Table 3-3, the change in land uses at buildout of the proposed Project would generate a total of 3.56 MTCO₂e/SP per year. However, it should be noted that this only considers the change in land use from the proposed Project, pursuant to CEQA's requirements for evaluation; and that does not consider the citywide improvement in the jobs and housing balance that would reduce GHG emissions from provision of housing near employment.

TABLE 3-3: PROJECT SCENARIO GHG EMISSIONS

Emission Source	Emissions (MT/yr)				
	CO ₂	CH ₄	N ₂ O	Refrigerants	Total CO₂e
Mobile Source	18,890.95	0.73	0.87	10.34	19,180.17
Area Source	626.61	0.01	0.00	0.00	627.37
Energy Source	2,979.17	0.32	0.02	0.00	2,994.18
Water Usage	121.25	3.52	0.08	0.00	234.64
Waste	178.25	17.82	0.00	0.00	623.62

Emission Source	Emissions (MT/yr)				
Emission source	CO ₂	CH₄	N ₂ O	Refrigerants	Total CO₂e
Refrigerants	0.00	0.00	0.00	0.42	0.42
Total CO₂e (All Sources)	23,660.41				
Service Population	6,637.00				
Total CO₂e/Service Population	3.56				
Screening Threshold (CO ₂ e)	3.00				
Threshold Exceeded?	YES				

Source: CalEEMod output, See Appendix 3.2 for detailed model outputs.

PROPOSED PROJECT COMPARISON TO APPROVED GENERAL PLAN BUILDOUT

Table 3-4 summarizes the proposed Project GHG emissions (Table 3-2) comparison to the Approved General Plan Buildout GHG emissions (Table 3-3). As shown on Table 3-4, the proposed Project would result in fewer GHG emissions per capita that would occur than if the site were built out consistent with the Approved General Plan. Although the proposed Project would result in fewer net emissions, the proposed Project total GHG emissions would have the potential to exceed the SCAQMD screening threshold of 3.00 MTCO₂e/SP per year and a potentially significant impact would occur.

TABLE 3-4: PROPOSED PROJECT COMPARISON TO APPROVED GENERAL PLAN BUILDOUT

Emission Source	Emissions (MT/yr)
Proposed Project	3.56
Approved General Plan Buildout	18.16
Net Emissions (Proposed – Approved)	-14.60

3.7 GHG Emissions Findings and Recommendations

3.7.1 **GHG IMPACT 1**

Potential to generate direct or indirect GHG emissions that would result in a significant impact on the environment.

The proposed Project as mentioned previously, would result in 3.56 MTCO₂e/SP per year in 2035 as summarized in Table 3-3 (presented previously). As such, the Project total GHG emissions would exceed the SCAQMD screening threshold of 3.00 MTCO₂e/SP per year. Thus, Project-related emissions would have a potential significant direct or indirect impact on GHG and climate change. In addition, as described in the Air Quality Analysis, there is uncertainty regarding the specific nature of the construction and operational activities that would be facilitated under implementation of the proposed Project. Mitigation Measures AQ-1 and AQ-2 require the preparation of project-specific construction and operational GHG analysis and incorporation of

mitigation if emissions levels are shown to be above SCAQMD-recommended thresholds of significance. Resulting mitigation would not only reduce criteria pollutant emissions but would also generally reduce GHG emissions. It cannot be definitively known or stated at this time what level of emissions reductions future development projects occurring under implementation of the proposed Project would achieve via the implementation of these mitigation measures.

While the implementation of Mitigation Measures AQ-1 and AQ-2 would reduce GHG emissions, it cannot be definitively known or stated at this time if future emissions in the City would be reduced to levels that are below applicable thresholds. Therefore, this impact would be significant and unavoidable despite the implementation of policies that have been incorporated with the intent of reducing GHG emissions and the incorporation of Mitigation Measures AQ-1 and AQ-2.

The Project would have a significant and unavoidable impact with respect to GHG Impact #1.

3.7.2 **GHG IMPACT 2**

The Project would have the potential to conflict with any applicable plan, policy or regulation of an agency adopted for the purpose of reducing the emissions of GHGs.

As previously stated, pursuant to 15604.4 of the *CEQA Guidelines*, a lead agency may rely on qualitative analysis or performance-based standards to determine the significance of impacts from GHG emissions (45). As such, the proposed Project's consistency with the 2022 Scoping Plan is discussed below. It should be noted that the proposed Project's consistency with the 2022 Scoping Plan also satisfies consistency with AB 32 since the 2022 Scoping Plan is based on the overall targets established by AB 32 and SB 32. Consistency with the 2008 and 2017 Scoping Plan is not necessary, since both of these plans have been superseded by the 2022 Scoping Plan.

2022 SCOPING PLAN CONSISTENCY

Included in the 2022 Scoping Plan is a set of Local Actions (Appendix D to the 2022 Scoping Plan) aimed at providing local jurisdictions with tools to reduce GHGs and assist the state in meeting the ambitious targets set forth in the 2022 Scoping Plan. Appendix D to the 2022 Scoping Plan includes a section on evaluating plan-level and project-level alignment with the State's Climate Goals in CEQA GHG analyses. In this section, CARB identifies several recommendations and strategies that should be considered for new development in order to determine consistency with the 2022 Scoping Plan. Notably, this section is focused on Residential and Mixed-Use Projects, in fact CARB states in Appendix D (page 4): "...focuses primarily on climate action plans (CAPs) and local authority over new residential development. It does not address other land use types (e.g., industrial) or air permitting."

The 2022 Scoping Plan lays out a framework to determine Project-level consistency when there is not a CEQA-qualified CAP available to tier off of. CARB recommends that the first approach for determining whether a proposed residential or mixed-use residential development would align with the State's climate goals is to examine whether the project includes key project attributes that reduce operational GHG emissions while simultaneously advancing fair housing. The 2022 Scoping Plan goes on to note that Projects that can demonstrate consistency with the priority

areas identified on Table 3 Key Residential and Mixed-Use Project Attributes that Reduce GHGs from the 2022 Scoping Plan would be aligned with the State's priority GHG reduction strategies and would be deemed consistent with the Scoping Plan. As such, these Projects are considered to be consistent with the Scoping Plan or other plans, policies, or regulations adopted for the purposes of reducing GHGs; therefore, the GHG emissions associated with such projects would result in a less-than-significant GHG impact under CEQA.

The Project's consistency with the *Key Residential and Mixed-Use Project Attributes that Reduce GHGs* is summarized on Table 3-5.

TABLE 3-5: PROJECT CONSISTENCY WITH 2022 SCOPING PLAN KEY RESIDENTIAL AND MIXED-USE PROJECT ATTRIBUTES THAT REDUCE GHGS

Priority Areas	Key Project Attribute	Proposed Project Consistency with Attribute
Transportation Electrification	Provides EV charging infrastructure that, at minimum, meets the most ambitious voluntary standard in the California Green Building Standards Code at the time of project approval	Potentially Inconsistent. Future implementing projects in Sites 1 through 24 would be required to include EV charging infrastructure as required by the California Green Building Standards Code; it is unknown if all future development projects would meet the most ambitious voluntary standards. Therefore, the Project has the potential to be inconsistent with this attribute.
VMT Reduction	Is located on infill sites that are surrounded by existing urban uses and reuses or redevelops previously undeveloped or underutilized land that is presently served by existing utilities and essential public services (e.g., transit, streets, water, sewer)	Potentially Inconsistent. The future implementing projects in Sites 1 through 24 would be developed on underdeveloped or underutilized land which may or may not be served by existing infrastructure and public services. Therefore, the Project has the potential to be inconsistent with this attribute.
VIVIT REDUCTION	Does not result in the loss or conversion of natural and working lands	Potentially Inconsistent. Future implementing projects in Sites 1 through 24 are currently developed or vacant. The Project would have the potential to result in the loss or conversion of natural and working lands. Therefore, the Project has the potential to be inconsistent with this attribute.

Consists of transit-supportive Potentially Inconsistent. The densities of (minimum overall density for the future residential dwelling units per acre), implementing residential projects in Sites 1 through 23 would be 15 to 30 dwelling units per acre; and thus, could be less than the 20 units per acre minimum. Therefore, the Is in proximity to existing transit Project has the potential to be stops (within a half mile), or inconsistent with this attribute. Satisfies more detailed and stringent criteria specified in the region's SCS Reduces parking requirements by: Potentially Inconsistent. As this is a programmatic analysis, and parking specifics about future implementing projects in Sites 1 Eliminating parking requirements or through 24 are not known at this maximum allowable including time. As such, the Project would parking ratios (i.e., the ratio of have the potential to parking spaces to residential units inconsistent with parking or square feet); or reductions provided by the 2022 Scoping Plan. Providing residential parking supply at a ratio of less than one parking space per dwelling unit; or For multifamily residential development, requiring parking costs to be unbundled from costs to rent or own a residential unit. At least 20 percent of units included Potentially Inconsistent. Although are affordable to lower-income the Project's intent is to meet the residents City's RHNA allocation, including lower income residential units, this is a programmatic analysis, and specifics about future implementing projects in Sites 1 through 24 are not known at this time. As such, future development under the Project could have the potential to be inconsistent with provision of at least 20 percent of units for lower-income residents. Results in no net loss of existing **Consistent.** Sites 1 through 23 site

	affordable units	are currently underdeveloped or underutilized. The Project's intent is to meet RHNA requirements per the City's 2021-2029 Housing Element, including provision of affordable units. No net loss of affordable units would occur. Therefore, the Project would be consistent with this attribute.
Building Decarbonization	Uses all-electric appliances without any natural gas connections and does not use propane or other fossil fuels for space heating, water heating, or indoor cooking	Potentially Inconsistent. Future developments pursuant to the proposed rezoning would be required to meet CALGreen energy efficiency standards as included in the Redlands Municipal Code Section 15.16. Also, Mitigation Measure AQ-2 requires implementation of project specific mitigation measures to reduce GHG emissions. Therefore, the future development that would occur pursuant to the proposed rezoning would be developed in a manner that promotes energy efficiency and minimizes the reliance on fossil fuels. However, it is possible that future development would include natural gas, propane, or other fossil fuels. Therefore, the Project could have the potential to be inconsistent with this attribute.

As demonstrated on Table 3-5, the Project would have the potential to be inconsistent with some of the 2022 Scoping Plan's key residential and mixed-use project attributes to reduce GHGs. As such, the Project would have the potential to conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of GHGs.

CONSISTENCY WITH THE CITY OF REDLANDS CAP

The City of Redlands adopted its CAP in December 2017. The CAP did not identify any required measure to achieve the 2030 emission targets. However, the CAP did recommend several measures that would achieve GHG reductions including providing solar photovoltaic systems, increasing energy efficiency 5% over 2016 standards, and using high efficiency lighting, and reducing GHG emissions associated with water delivery and treatment by 10%. In support of these measures the proposed Project would increase energy efficiency approximately 30% over 2016 standards primarily through high efficiency of lighting. Additionally, the proposed Project would comply with CALGreen indoor water requirements, which represent a 20% reduction in water use, and the City of Redlands MWELO, which would reduce outdoor water use. Thus, the

proposed Project would not obstruct the City of Redlands CAP GHG reduction measures and would have a less than significant impact.

CONCLUSION

The proposed Project would have the potential to be inconsistent with the 2022 Scoping Plan Appendix D, Local Actions, however; it should be noted that the Project would be consistent with the City of Redlands CAP and other applicable plan, policy or regulation of an agency adopted for the purpose of reducing the emissions of GHGs. Due to the potential inconsistency with the 2022 Scoping Plan Appendix D, Local Actions, the proposed Project would result in a significant and unavoidable impact with respect to GHG Impact #2.

This page intentionally left blank

4 REFERENCES

- 1. **State of California.** *2020 CEQA California Environmental Quality Act.* 2020.
- 2. **Air Resources Board.** Assembly Bill 32: Global Warming Solutions Act. [Online] 2006. http://www.arb.ca.gov/cc/ab32/ab32.htm.
- 3. —. Sustainable Communities. [Online] 2008. http://www.arb.ca.gov/cc/sb375/sb375.htm.
- 4. —. Clean Car Standards Pavley, Assembly Bill 1493. [Online] September 24, 2009. http://www.arb.ca.gov/cc/ccms/ccms.htm.
- 5. **Building Standards Commission.** California Building Standards Code (Title 24, California Code of Regulations). [Online] http://www.bsc.ca.gov/codes.aspx.
- 6. **California Energy Commission.** California Code of Regulations, TITLE 20, Division 2. [Online] September 3, 2013. http://www.energy.ca.gov/reports/title20/index.html.
- 7. **Air Resources Board.** Title 17 California Code of Regulation. [Online] 2010. http://www.arb.ca.gov/regs/regs-17.htm.
- 8. **Department of Water Resources.** Updated Model Water Efficient Landscape Ordinance AB 1881. [Online] 2006. [Cited: November 13, 2013.] http://www.water.ca.gov/wateruseefficiency/landscapeordinance/updatedOrd_history.cfm.
- 9. **California Energy Commission.** SB 1368 Emission Performance Standards. [Online] September 29, 2006. http://www.energy.ca.gov/emission_standards/.
- 10. —. Renewables Portfolio Standard (RPS). [Online] 2002. http://www.energy.ca.gov/portfolio/.
- 11. **California Legislative Information.** Senate Bill No. 32. [Online] September 8, 2016. https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201520160SB32.
- 12. **National Oceanic and Atmospheric Administration.** Greenhouse Gases Water Vapor. *NOAA National Centers For Environmental Information.* [Online] https://www.ncdc.noaa.gov/monitoring-references/faq/greenhouse-gases.php?section=watervapor.
- 13. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report. International Panel on Climate Change. 4, 2007.
- 14. *The Carbon Cycle and Climate Change.* **Bennington, Bret J.** 1, s.l.: Brooks/Cole. ISBN 1 3: 978-0-495-73855-8.
- 15. **The National Institute for Occupational Safety and Health.** Carbon Dioxide. *Centers for Disease Control and Prevention.* [Online] https://www.cdc.gov/niosh/npg/npgd0103.html.
- 16. **National Oceanic and Atmospheric Administration.** Greenhouse Gases Methane. *NOAA National Centers for Environmental Information.* [Online] https://www.ncdc.noaa.gov/monitoring-references/faq/greenhouse-gases.php?section=methane.
- 17. World Resources Institute. Climate Analysis Indicator Tool (CAIT). [Online] http://cait.wri.org.
- 18. **National Oceanic and Atmospheric Administration.** Greenhouse Gases Chlorofluorocarbons. *NOAA National Centers For Environmental Information.* [Online] https://www.ncdc.noaa.gov/monitoring-references/faq/greenhouse-gases.php?section=chlorofluorocarbons.
- 19. **United States Environmental Protection Agency.** Regulation for Reducting Sulfur Hexafluoride Emissions from Gas Insulated Switchgear. *Environmental Protection Agency.* [Online] May 7, 2014.

- https://www.epa.gov/sites/production/files/2016-02/documents/mehl-arb-presentation-2014-wkshp.pdf.
- 20. **World Resources Institute.** Nitrogen Trifluoride Now Required in GHG Protocol Greenhouse Gas Emissions Inventory. [Online] May 22, 2013. https://www.wri.org/blog/2013/05/nitrogen-trifluoride-now-required-ghg-protocol-greenhouse-gas-emissions-inventories.
- 21. **National Center for Biotechnology Information.** Nitrogen Trifluoride. *PubChem Compound Database.* [Online] https://pubchem.ncbi.nlm.nih.gov/compound/24553.
- 22. **American Lung Association.** Climate Change. [Online] http://www.lung.org/our-initiatives/healthy-air/outdoor/climate-change/.
- 23. **Barbara H. Allen-Diaz.** Climate change affects us all. *University of California Agriculture and Natural Resources*. [Online] April 1, 2009. http://calag.ucanr.edu/Archive/?article=ca.v063n02p51.
- 24. **Intergovernmental Panel on Climate Change.** Climate Change 2021 The Physical Science Basis. *Climate Change 2021 The Physical Science Basis.* [Online] https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/.
- 25. United Nations. Annex 1. [Online] 2023. https://di.unfccc.int/time_series.
- 26. —. GHG Profiles Non-Annex I. [Online] 2023. http://di.unfccc.int/ghg_profile_non_annex1.
- 27. **California Air Resources Board.** 2023 GHG Inventory. *California Greenhouse Gas Emission Inventory 2000-2021 Edition*. [Online] https://ww2.arb.ca.gov/ghg-inventory-data.
- 28. Energy Information Administration . [Online] https://www.eia.gov/state/data.php?sid=US.
- 29. California Energy Commission. Our Changing Climate Assessing the Risks to California. 2006.
- 30. **Center for Climate and Energy Solutions (C2ES).** Outcomes of the U.N. Climate Change Conference. *Center for Climate and Energy Solutions (C2ES).* [Online] 2015. http://www.c2es.org/international/negotiations/cop21-paris/summary.
- 31. **Agency, United States Environmental Protection.** Endangerment and Cause or Contribute Findings for Greenhouse Gases under the Section 202(a) of the Clean Air Act. *United States Environmental Protection Agency.* [Online] 2020. https://www.epa.gov/ghgemissions/endangerment-and-cause-or-contribute-findings-greenhouse-gases-under-section-202a-clean.
- 32. **Federal Register.** Mid-Term Evaluation of Greenhouse Gas Emissions Standards for Model Year 2022-2025 Light-Duty Vehicles. [Online] 2018. https://www.federalregister.gov/documents/2018/04/13/2018-07364/mid-term-evaluation-of-greenhouse-gas-emissions-standards-for-model-year-2022-2025-light-duty.
- 33. **Administration, National Highway Traffic Safety.** SAFE: The Safer Affordable Fuel-Efficient 'SAFE' Vehicle Rule. *National Highway Traffic Safety Administration*. [Online] 2020. https://www.nhtsa.gov/corporate-average-fuel-economy/safe.
- 34. **National Highway Traffic Safety Administration.** Corporate Average Fuel Economy. [Online] https://www.nhtsa.gov/laws-regulations/corporate-average-fuel-economy.
- 35. **United States Department of Transportation.** Corporate Average Fuel Economy Standards for Model Years 2024-2026 Passenger Cars and Light Trucks. [Online] https://www.nhtsa.gov/sites/nhtsa.gov/files/2022-04/Final-Rule-Preamble_CAFE-MY-2024-2026.pdf.
- 36. **California Air Resources Board.** California's 2017 Climate Change Scoping Plan . [Online] 2017. https://ww3.arb.ca.gov/cc/scopingplan/scoping_plan_2017_es.pdf.

- 37. **Lawrence Berkeley National Laboratory.** California's Policies Can Significantly Cut Greenhouse Gas Emissions through 2030. *Lawrence Berkeley National Laboratory.* [Online] January 22, 2015. http://newscenter.lbl.gov/2015/01/22/californias-policies-can-significantly-cut-greenhouse-gasemissions-2030/.
- 38. **Ernest Orlando Lawrence Berkeley National Laboratory.** Modeling California policy impacts on greenhouse gas emissions. [Online] 2015. https://eaei.lbl.gov/sites/all/files/lbnl-7008e.pdf.
- 39. **California Air Resources Board.** Legal Disclaimer & User's Notice. [Online] April 2019. https://ww3.arb.ca.gov/cc/capandtrade/capandtrade/ct_reg_unofficial.pdf.
- 40. —. Climate Change Scoping Plan. [Online] 2014. https://ww3.arb.ca.gov/cc/scopingplan/2013_update/first_update_climate_change_scoping_plan.p
- 41. —. 2022 Scoping Plan for Achieving Carbon Neutrality.
- 42. —. Low Carbon Fuel Standard. [Online] December 2019. https://ww3.arb.ca.gov/fuels/lcfs/lcfs.htm.
- 43. **California Energy Commission.** Energy Commission Adopts Updated Building Standards to Improve Efficiency, Reduce Emissions from Homes and Businesses. [Online] August 11, 2021. https://www.energy.ca.gov/news/2021-08/energy-commission-adopts-updated-building-standards-improve-efficiency-reduce-0.
- 44. **California Department of General Services.** 2022 CALGreen Code. *CALGreen.* [Online] https://codes.iccsafe.org/content/CAGBC2022P1.
- 45. Association of Environmental Professionals. 2018 CEQA California Environmental Quality Act. 2018.
- 46. City of Redlands. City of Redlands Climate Action Plan. Redlands, CA: s.n., December 2017.
- 47. **South Coast Air Quality Management District.** Interim CEQA GHG Significance Threshold for Stationary Sources, Rules and Plans. [Online] http://www.aqmd.gov/home/rules-compliance/ceqa/air-quality-analysis-handbook/ghg-significance-thresholds.
- 48. **California Air Pollution Control Officers Association (CAPCOA).** California Emissions Estimator Model (CalEEMod). [Online] September 2016. www.caleemod.com.
- 49. **California Natural Resources Agency.** Final Statement of Reasons for Regulatory Action, Amendments to the State CEQA Guidelines Addressing Analysis and Mitigation of Greenhouse Gas Emissions Pursuant to SB97. [Online] December 2009.
- 50. Minutes for the GHG CEQA Significance. South Coast Air Quality Managment District. 2008.
- 51. **Urban Crossroads, Inc.** Regional Housing Needs Assessment Rezone Air Quality Impact Analysis . 2024.
- 52. Regional Housing Needs Assessment Rezone Traffic Impact Analysis. 2024.
- 53. Air Resources Board. 2019 GHG Inventory. *California Greenhouse Gas Emission Inventory 2000-2017 Edition*. [Online] [Cited: September 19, 2019.] http://www.arb.ca.gov/cc/inventory/data/data.htm.

This page intentionally left blank

5 CERTIFICATIONS

The contents of this GHG study report represent an accurate depiction of the GHG impacts associated with the proposed Regional Housing Needs Assessment Rezone Project. The information contained in this GHG report is based on the best available data at the time of preparation. If you have any questions, please contact me directly at hqureshi@urbanxroads.com.

Haseeb Qureshi
Principal
URBAN CROSSROADS, INC.
hqureshi@urbanxroads.com

EDUCATION

Master of Science in Environmental Studies California State University, Fullerton • May 2010

Bachelor of Arts in Environmental Analysis and Design University of California, Irvine • June 2006

PROFESSIONAL AFFILIATIONS

AEP – Association of Environmental Planners AWMA – Air and Waste Management Association ASTM – American Society for Testing and Materials

PROFESSIONAL CERTIFICATIONS

Planned Communities and Urban Infill – Urban Land Institute • June 2011
Indoor Air Quality and Industrial Hygiene – EMSL Analytical • April 2008
Principles of Ambient Air Monitoring – California Air Resources Board • August 2007
AB2588 Regulatory Standards – Trinity Consultants • November 2006
Air Dispersion Modeling – Lakes Environmental • June 2006

This page intentionally left blank

14992 - Redlands RHNA (Existing) Detailed Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.4. Operations Emissions Compared Against Thresholds
 - 2.5. Operations Emissions by Sector, Unmitigated
- 4. Operations Emissions Details
 - 4.1. Mobile Emissions by Land Use
 - 4.1.1. Unmitigated
 - 4.2. Energy
 - 4.2.1. Electricity Emissions By Land Use Unmitigated
 - 4.2.3. Natural Gas Emissions By Land Use Unmitigated
 - 4.3. Area Emissions by Source
 - 4.3.1. Unmitigated

- 4.4. Water Emissions by Land Use
 - 4.4.1. Unmitigated
- 4.5. Waste Emissions by Land Use
 - 4.5.1. Unmitigated
- 4.6. Refrigerant Emissions by Land Use
 - 4.6.1. Unmitigated
- 4.7. Offroad Emissions By Equipment Type
 - 4.7.1. Unmitigated
- 4.8. Stationary Emissions By Equipment Type
 - 4.8.1. Unmitigated
- 4.9. User Defined Emissions By Equipment Type
 - 4.9.1. Unmitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
- 5. Activity Data
 - 5.9. Operational Mobile Sources

- 5.9.1. Unmitigated
- 5.10. Operational Area Sources
 - 5.10.1. Hearths
 - 5.10.1.1. Unmitigated
 - 5.10.2. Architectural Coatings
 - 5.10.3. Landscape Equipment
- 5.11. Operational Energy Consumption
 - 5.11.1. Unmitigated
- 5.12. Operational Water and Wastewater Consumption
 - 5.12.1. Unmitigated
- 5.13. Operational Waste Generation
 - 5.13.1. Unmitigated
- 5.14. Operational Refrigeration and Air Conditioning Equipment
 - 5.14.1. Unmitigated
- 5.15. Operational Off-Road Equipment
 - 5.15.1. Unmitigated
- 5.16. Stationary Sources
 - 5.16.1. Emergency Generators and Fire Pumps

- 5.16.2. Process Boilers
- 5.17. User Defined
- 5.18. Vegetation
 - 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated
 - 5.18.2. Sequestration
 - 5.18.2.1. Unmitigated
- 6. Climate Risk Detailed Report
 - 6.1. Climate Risk Summary
 - 6.2. Initial Climate Risk Scores
 - 6.3. Adjusted Climate Risk Scores
 - 6.4. Climate Risk Reduction Measures
- 7. Health and Equity Details
 - 7.1. CalEnviroScreen 4.0 Scores
 - 7.2. Healthy Places Index Scores
 - 7.3. Overall Health & Equity Scores

- 7.4. Health & Equity Measures
- 7.5. Evaluation Scorecard
- 7.6. Health & Equity Custom Measures
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	14992 - Redlands RHNA (Existing)
Operational Year	2024
Lead Agency	_
Land Use Scale	Plan/community
Analysis Level for Defaults	County
Windspeed (m/s)	2.50
Precipitation (days)	24.0
Location	34.05535, -117.218325
County	San Bernardino-South Coast
City	Redlands
Air District	South Coast AQMD
Air Basin	South Coast
TAZ	5395
EDFZ	10
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas
App Version	2022.1.1.26

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)		Special Landscape Area (sq ft)	Population	Description
Unrefrigerated Warehouse-No Rail	828	1000sqft	19.0	828,350	0.00	_	_	_

User Defined Industrial	828	User Defined Unit	0.00	0.00	0.00	_	_	Trucks
Regional Shopping Center	828	1000sqft	19.0	828,350	0.00	_	_	Commercial/Industri
Apartments Mid Rise	111	Dwelling Unit	2.92	106,560	0.00	_	367	_
General Office Building	276	1000sqft	6.34	276,170	0.00	_	_	_
Regional Shopping Center	276	1000sqft	6.34	276,170	0.00	_	_	Commercial
Other Asphalt Surfaces	62.5	Acre	62.5	0.00	0.00	_	_	_

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.4. Operations Emissions Compared Against Thresholds

Un/Mit.	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	316	294	213	1,549	3.38	3.72	255	259	3.52	65.0	68.5	1,854	377,047	378,901	211	23.1	1,312	392,393
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	281	260	225	1,263	3.19	3.55	255	259	3.39	65.0	68.4	1,854	357,838	359,692	212	23.7	37.5	372,095
Average Daily (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	237	221	169	1,028	2.33	2.77	181	184	2.63	46.1	48.7	1,854	267,777	269,632	207	17.9	410	280,541

Annua (Max)	I —	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit	43.3	40.3	30.9	188	0.43	0.51	33.0	33.5	0.48	8.40	8.88	307	44,334	44,641	34.2	2.96	67.9	46,447

2.5. Operations Emissions by Sector, Unmitigated

Sector	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	-	_	_	_	-	_	_	_	_	_	_	_	_	_	-	_
Mobile	241	221	202	1,439	3.32	2.77	255	258	2.60	65.0	67.6	_	343,237	343,237	21.4	21.4	1,309	351,443
Area	73.7	72.2	2.71	103	0.02	0.32	_	0.32	0.28	_	0.28	0.00	2,749	2,749	0.06	0.01	_	2,753
Energy	0.92	0.46	8.32	6.86	0.05	0.63	_	0.63	0.63	_	0.63	_	28,934	28,934	2.68	0.24	_	29,072
Water	_	_	_	_	_	_	_	_	_	_	_	627	2,127	2,754	64.5	1.55	_	4,828
Waste	_	_	_	_	_	_	_	_	_	_	_	1,227	0.00	1,227	123	0.00	_	4,294
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	3.54	3.54
Total	316	294	213	1,549	3.38	3.72	255	259	3.52	65.0	68.5	1,854	377,047	378,901	211	23.1	1,312	392,393
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	224	203	215	1,255	3.13	2.77	255	258	2.61	65.0	67.6	_	324,440	324,440	22.5	21.9	33.9	331,559
Area	56.0	55.9	1.84	0.78	0.01	0.15	_	0.15	0.15	_	0.15	0.00	2,337	2,337	0.04	< 0.005	_	2,340
Energy	0.92	0.46	8.32	6.86	0.05	0.63	_	0.63	0.63	_	0.63	_	28,934	28,934	2.68	0.24	_	29,072
Water	_	_	_	_	_	_	_	_	_	_	_	627	2,127	2,754	64.5	1.55	_	4,828
Waste	_	_	_	_	_	_	_	_	_	_	_	1,227	0.00	1,227	123	0.00	_	4,294
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	3.54	3.54
Total	281	260	225	1,263	3.19	3.55	255	259	3.39	65.0	68.4	1,854	357,838	359,692	212	23.7	37.5	372,095
Average Daily	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	168	153	160	951	2.28	2.01	181	183	1.89	46.1	47.9	_	236,274	236,274	16.7	16.1	407	241,901

Area	67.9	67.0	0.72	70.1	< 0.005	0.13	_	0.13	0.10	_	0.10	0.00	442	442	0.01	< 0.005	_	443
Energy	0.92	0.46	8.32	6.86	0.05	0.63	_	0.63	0.63	_	0.63	_	28,934	28,934	2.68	0.24	_	29,072
Water	_	_	_	_	_	_	_	_	_	_	_	627	2,127	2,754	64.5	1.55	_	4,828
Waste	_	_	_	_	_	_	_	_	_	_	_	1,227	0.00	1,227	123	0.00	_	4,294
Refrig.	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	3.54	3.54
Total	237	221	169	1,028	2.33	2.77	181	184	2.63	46.1	48.7	1,854	267,777	269,632	207	17.9	410	280,54
Annual	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_
Mobile	30.7	28.0	29.2	174	0.42	0.37	33.0	33.4	0.35	8.40	8.75	_	39,118	39,118	2.76	2.67	67.3	40,049
Area	12.4	12.2	0.13	12.8	< 0.005	0.02	_	0.02	0.02	_	0.02	0.00	73.2	73.2	< 0.005	< 0.005	_	73.4
Energy	0.17	0.08	1.52	1.25	0.01	0.12	_	0.12	0.12	_	0.12	_	4,790	4,790	0.44	0.04	_	4,813
Water	_	_	_	_	_	_	_	_	_	_	_	104	352	456	10.7	0.26	_	799
Waste	_	_	_	_	_	_	_	_	_	_	_	203	0.00	203	20.3	0.00	_	711
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.59	0.59
Total	43.3	40.3	30.9	188	0.43	0.51	33.0	33.5	0.48	8.40	8.88	307	44,334	44,641	34.2	2.96	67.9	46,447

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrig erated Wareho use-No Rail	3.99	3.67	2.11	40.3	0.08	0.04	7.48	7.52	0.03	1.89	1.92	_	8,092	8,092	0.31	0.21	31.7	8,194

User Defined Industrial	4.76	1.17	47.0	27.3	0.38	0.65	13.2	13.8	0.62	3.55	4.17	_	42,154	42,154	3.45	6.25	129	44,230
Regiona I Shoppin g Center	215	201	137	1,221	2.50	1.84	205	207	1.72	52.1	53.9	_	257,020	257,020	16.0	13.3	1,005	262,386
Apartme nts Mid Rise	2.54	2.28	2.43	23.0	0.05	0.04	4.53	4.57	0.04	1.15	1.19	_	5,546	5,546	0.25	0.25	22.2	5,648
General Office Building	14.7	13.2	13.5	127	0.30	0.21	24.8	25.0	0.19	6.30	6.49	_	30,424	30,424	1.40	1.36	121	30,986
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	241	221	202	1,439	3.32	2.77	255	258	2.60	65.0	67.6	_	343,237	343,237	21.4	21.4	1,309	351,443
Daily, Winter (Max)	_	_	_	_	_	_	_	_	-	_	_	-	_	_	-	-	_	_
Unrefrig erated Wareho use-No Rail	3.79	3.47	2.34	33.0	0.07	0.04	7.48	7.52	0.03	1.89	1.92	_	7,450	7,450	0.33	0.22	0.82	7,526
User Defined Industrial	4.72	1.14	49.1	27.3	0.38	0.65	13.2	13.8	0.62	3.55	4.17		42,161	42,161	3.44	6.25	3.34	44,114
Regiona I Shoppin g Center	199	184	146	1,070	2.35	1.84	205	207	1.72	52.1	53.9	_	241,138	241,138	17.0	13.8	26.0	245,688
Apartme nts Mid Rise	2.38	2.11	2.61	19.0	0.05	0.04	4.53	4.57	0.04	1.15	1.19	-	5,194	5,194	0.26	0.25	0.57	5,277

General Office Building	13.7	12.2	14.5	106	0.28	0.21	24.8	25.0	0.19	6.30	6.50	_	28,496	28,496	1.44	1.41	3.15	28,955
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	224	203	215	1,255	3.13	2.77	255	258	2.61	65.0	67.6	_	324,440	324,440	22.5	21.9	33.9	331,559
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrig erated Wareho use-No Rail	0.50	0.46	0.32	4.59	0.01	< 0.005	0.98	0.99	< 0.005	0.25	0.25	_	915	915	0.04	0.03	1.66	926
User Defined Industrial	0.63	0.15	6.63	3.64	0.05	0.09	1.74	1.83	0.08	0.47	0.55	-	5,108	5,108	0.42	0.76	6.74	5,351
Regiona I Shoppin g Center	27.3	25.3	19.8	147	0.31	0.24	26.1	26.4	0.23	6.64	6.86	_	28,663	28,663	2.09	1.66	50.9	29,262
Apartme nts Mid Rise	0.42	0.37	0.47	3.50	0.01	0.01	0.79	0.80	0.01	0.20	0.21	_	843	843	0.04	0.04	1.54	858
General Office Building	1.87	1.67	2.03	15.1	0.04	0.03	3.36	3.38	0.03	0.85	0.88	_	3,588	3,588	0.18	0.18	6.53	3,652
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	30.7	28.0	29.2	174	0.42	0.37	33.0	33.4	0.35	8.40	8.75	_	39,118	39,118	2.76	2.67	67.3	40,049

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	-	-	-	-	-	-	-	_	_	-	_	-	_	_	-	_
Unrefrig erated Wareho use-No Rail	_	_	-	_	_	_	_	_	_	_	_	_	3,654	3,654	0.35	0.04	_	3,676
User Defined Industrial	_	_	-	-	-	_	-	_	_	_	_	_	0.00	0.00	0.00	0.00	-	0.00
Regiona I Shoppin g Center	_	_	_	_	_	_	_	_	_	_	_	_	10,263	10,263	0.97	0.12	_	10,323
Apartme nts Mid Rise		_	_	_	_	_	_	_	_	_	_	_	458	458	0.04	0.01	_	460
General Office Building	_	_	_	_	_	_	_	_	_	-	_	_	4,604	4,604	0.44	0.05	-	4,630
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	18,979	18,979	1.80	0.22	_	19,089
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrig erated Wareho use-No Rail	_	_	_	_	_	-	_	_	_	_	_	_	3,654	3,654	0.35	0.04	_	3,676

User Defined	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Industrial Regiona	_	_	_	_	_	_	_	_	_	_	_	_	10,263	10,263	0.97	0.12	_	10,323
I Shoppin g Center																		
Apartme nts Mid Rise	_	_	-	-	_	_	-	-	-	_	-	-	458	458	0.04	0.01	-	460
General Office Building	_	_	_	-	_	_	-	-	_	_	-	_	4,604	4,604	0.44	0.05	_	4,630
Other Asphalt Surfaces	_	_	_	-	_		_	-	-	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	18,979	18,979	1.80	0.22	_	19,089
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrig erated Wareho use-No Rail	_		-	_	_	_	_	_	_	_	_	_	605	605	0.06	0.01	_	609
User Defined Industrial	_	_	-	-	_	_	-	-	-	_	-	-	0.00	0.00	0.00	0.00	-	0.00
Regiona I Shoppin g Center	_	_	_	_	_	_	_	_	_	_	_	_	1,699	1,699	0.16	0.02	_	1,709
Apartme nts Mid Rise	_	_	_	_	_	_	_	_	_	_	_	_	75.8	75.8	0.01	< 0.005	_	76.2
General Office Building	_	_	_	-	-	-	_	_	_	_	_	_	762	762	0.07	0.01	-	767

Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	3,142	3,142	0.30	0.04	_	3,160

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

				adily, toll	, ,													
Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrig erated Wareho use-No Rail	0.47	0.23	4.23	3.55	0.03	0.32	_	0.32	0.32	_	0.32	_	5,047	5,047	0.45	0.01	_	5,061
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	-	0.00	0.00	0.00	0.00	_	0.00
Regiona I Shoppin g Center	0.19	0.10	1.75	1.47	0.01	0.13	_	0.13	0.13	_	0.13	_	2,087	2,087	0.18	< 0.005	_	2,093
Apartme nts Mid Rise	0.04	0.02	0.31	0.13	< 0.005	0.03	_	0.03	0.03	_	0.03	_	393	393	0.03	< 0.005	_	394
General Office Building	0.22	0.11	2.04	1.71	0.01	0.15	_	0.15	0.15	_	0.15	_	2,429	2,429	0.21	< 0.005	_	2,435
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	0.92	0.46	8.32	6.86	0.05	0.63	_	0.63	0.63	_	0.63	_	9,955	9,955	0.88	0.02	_	9,983

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_
Unrefrig erated Wareho use-No Rail	0.47	0.23	4.23	3.55	0.03	0.32	_	0.32	0.32	_	0.32	_	5,047	5,047	0.45	0.01	_	5,061
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Regiona I Shoppin g Center	0.19	0.10	1.75	1.47	0.01	0.13	_	0.13	0.13	_	0.13	_	2,087	2,087	0.18	< 0.005	_	2,093
Apartme nts Mid Rise	0.04	0.02	0.31	0.13	< 0.005	0.03	_	0.03	0.03	_	0.03	_	393	393	0.03	< 0.005	_	394
General Office Building	0.22	0.11	2.04	1.71	0.01	0.15	_	0.15	0.15	-	0.15	-	2,429	2,429	0.21	< 0.005	_	2,435
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	-	0.00	-	0.00	0.00	0.00	0.00	_	0.00
Total	0.92	0.46	8.32	6.86	0.05	0.63	_	0.63	0.63	_	0.63	_	9,955	9,955	0.88	0.02	_	9,983
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrig erated Wareho use-No Rail	0.08	0.04	0.77	0.65	< 0.005	0.06	_	0.06	0.06	_	0.06	_	836	836	0.07	< 0.005	_	838
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00		0.00	_	0.00	0.00	0.00	0.00	_	0.00

Regiona I Shoppin g	0.04	0.02	0.32	0.27	< 0.005	0.02	_	0.02	0.02	_	0.02	_	346	346	0.03	< 0.005	_	346
Apartme nts Mid Rise	0.01	< 0.005	0.06	0.02	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	65.0	65.0	0.01	< 0.005	_	65.2
General Office Building	0.04	0.02	0.37	0.31	< 0.005	0.03	_	0.03	0.03	_	0.03	_	402	402	0.04	< 0.005	_	403
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	0.17	0.08	1.52	1.25	0.01	0.12	_	0.12	0.12	_	0.12	_	1,648	1,648	0.15	< 0.005	_	1,653

4.3. Area Emissions by Source

4.3.1. Unmitigated

Source	тос	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Hearths	0.22	0.11	1.84	0.78	0.01	0.15	_	0.15	0.15	_	0.15	0.00	2,337	2,337	0.04	< 0.005	_	2,340
Consum er Product s	49.8	49.8	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coating s	6.00	6.00	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_
Landsca pe Equipm ent	17.7	16.3	0.87	102	0.01	0.17	_	0.17	0.13		0.13		412	412	0.02	< 0.005	_	413

Total	73.7	72.2	2.71	103	0.02	0.32	_	0.32	0.28	_	0.28	0.00	2,749	2,749	0.06	0.01	_	2,753
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Hearths	0.22	0.11	1.84	0.78	0.01	0.15	_	0.15	0.15	_	0.15	0.00	2,337	2,337	0.04	< 0.005	_	2,340
Consum er Product s	49.8	49.8	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coating s	6.00	6.00	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	56.0	55.9	1.84	0.78	0.01	0.15	_	0.15	0.15	_	0.15	0.00	2,337	2,337	0.04	< 0.005	_	2,340
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Hearths	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	0.00	26.5	26.5	< 0.005	< 0.005	_	26.5
Consum er Product s	9.08	9.08	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coating s	1.10	1.10	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Landsca pe Equipm ent	2.21	2.04	0.11	12.8	< 0.005	0.02	_	0.02	0.02	_	0.02	_	46.7	46.7	< 0.005	< 0.005	_	46.9
Total	12.4	12.2	0.13	12.8	< 0.005	0.02	_	0.02	0.02	_	0.02	0.00	73.2	73.2	< 0.005	< 0.005	_	73.4

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	-	-	-	-	-	-	_	-	_	_	_	-	-	-	-	-
Unrefrig erated Wareho use-No Rail	_	_	-	_	-	_	_	_	_	_	_	367	1,246	1,613	37.8	0.91	_	2,827
User Defined Industrial	_	_	-	-	-	_	-	-	_	-	_	0.00	0.00	0.00	0.00	0.00	-	0.00
Regiona I Shoppin g Center	_	_	_	_	_	_	_	_	_	_	_	157	532	689	16.1	0.39	_	1,208
Apartme nts Mid Rise		_	_	_	_	_	_	_	_	_	_	8.87	30.1	38.9	0.91	0.02	_	68.3
General Office Building	_	_	_	_	_	_	_	_	_	_	_	94.1	319	413	9.67	0.23	-	724
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	627	2,127	2,754	64.5	1.55	_	4,828
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	-	_	_	_	_	-	_	-	_
Unrefrig erated Wareho use-No Rail	_	_	_	_	-		_	_	_	_	_	367	1,246	1,613	37.8	0.91	_	2,827

User	_							_				0.00	0.00	0.00	0.00	0.00	_	0.00
Defined Industrial												0.00	0.00	0.00	0.00	0.00		0.00
Regiona	_	_	_	_	_	-	_	_	_	_	_	157	532	689	16.1	0.39	_	1,208
Shoppin g Center																		
Apartme nts Mid Rise	_	_	_	_	_	_	_	_	_	_	_	8.87	30.1	38.9	0.91	0.02	_	68.3
General Office Building		_	_	_	_	_	_	_	_	_	_	94.1	319	413	9.67	0.23	_	724
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	627	2,127	2,754	64.5	1.55	_	4,828
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrig erated Wareho use-No Rail	_	_	_	_	_	_	_	_	_	_	_	60.8	206	267	6.25	0.15	_	468
User Defined Industrial		_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Regiona I	_	_	_	_	_	-	_	_	_	_	_	26.0	88.1	114	2.67	0.06	_	200
Shoppin g Center																		
Apartme nts Mid Rise	_	_	_	_	_	_	_	_	_	_	_	1.47	4.98	6.45	0.15	< 0.005	_	11.3
General Office Building	_	_	_	_	_	_	_	_	_	_	_	15.6	52.8	68.4	1.60	0.04	_	120

Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	104	352	456	10.7	0.26	_	799

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E		PM10T		PM2.5D		1	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrig erated Wareho use-No Rail	_	_	_	_	_		_	_	_	_	_	420	0.00	420	41.9	0.00	_	1,468
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Regiona I Shoppin g Center	_	_	_	_	_	_	_	_	_	_		625	0.00	625	62.5	0.00	_	2,187
Apartme nts Mid Rise		_	-	_	_	_	_	_	_	_	_	44.2	0.00	44.2	4.42	0.00	_	155
General Office Building	_	_	-	_	_	_	_	_	_	_	_	138	0.00	138	13.8	0.00	_	484
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00

Total	_	_	_	_	_	_	_	_	_	_	_	1,227	0.00	1,227	123	0.00	_	4,294
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrig erated Wareho use-No Rail	_	_	_	_	_	_	_	_	_	_	_	420	0.00	420	41.9	0.00	_	1,468
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Regiona I Shoppin g Center	_		_		_	_	_	_	_	_	_	625	0.00	625	62.5	0.00	_	2,187
Apartme nts Mid Rise		_	_	_	_	_	_	_	_	_	_	44.2	0.00	44.2	4.42	0.00	_	155
General Office Building	_	_	-	_	_	_	_	_	_	_	_	138	0.00	138	13.8	0.00	-	484
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	1,227	0.00	1,227	123	0.00	_	4,294
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrig erated Wareho use-No Rail	_	_	_	_	_	_	_	_	_	_	_	69.5	0.00	69.5	6.94	0.00	_	243
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00

Regiona	_	_	_	_	_	_	_	_	_	_	_	103	0.00	103	10.3	0.00	_	362
Shoppin Center																		
Apartme nts Mid Rise	_	_	_	_	_	_	_	_	_	_	_	7.32	0.00	7.32	0.73	0.00	_	25.6
General Office Building	_	_	_	_	_	_	_		_	_	_	22.9	0.00	22.9	2.29	0.00	_	80.2
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	203	0.00	203	20.3	0.00	_	711

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

			,	J ,	_			_		<i>J</i> ,								
Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Regiona I Shoppin g Center	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	2.10	2.10
Apartme nts Mid Rise		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.76	0.76
General Office Building	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.67	0.67
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	3.54	3.54

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Regiona I Shoppin g Center	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	2.10	2.10
Apartme nts Mid Rise	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.76	0.76
General Office Building	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.67	0.67
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	3.54	3.54
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Regiona	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.35	0.35
Shoppin g Center																		
Apartme nts Mid Rise	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.13	0.13
General Office Building	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.11	0.11
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.59	0.59

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

		, , , , ,	,	, ,,	,				,	<i></i>								
Equipm	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
ent																		
Туре																		

Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_		_	_	_	_	_		_	_		_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_		_	_	_	_		_	_	_		_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipm ent Type	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipm ent Type	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Vegetati on	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_		_	_	_	_	_	_	_	_		_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

		(1.0, 0.		any, ton														
Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total		_	_	_	_	_			_	_	_	_	_	_			_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

				_ ·						_,								
Species	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

5. Activity Data

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Unrefrigerated Warehouse-No Rail	919	80.3	32.3	245,377	10,733	939	377	2,866,826

User Defined Industrial	497	43.9	17.4	132,774	14,885	1,315	521	3,976,577
Regional Shopping Center	30,657	38,601	15,714	10,824,912	154,081	217,031	88,349	56,094,537
Apartments Mid Rise	504	507	418	179,655	6,343	6,385	5,267	2,261,295
General Office Building	2,994	610	193	822,402	34,976	7,131	2,259	9,608,420
Regional Shopping Center	10,221	12,870	5,239	3,609,007	51,370	72,358	29,455	18,701,819
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

Hearth Type	Unmitigated (number)
Apartments Mid Rise	_
Wood Fireplaces	0
Gas Fireplaces	111
Propane Fireplaces	0
Electric Fireplaces	0
No Fireplaces	0

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
215784	71,928	3,313,560	1,104,520	163,481

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	250

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Unrefrigerated Warehouse-No Rail	3,825,903	349	0.0330	0.0040	15,747,496
User Defined Industrial	0.00	349	0.0330	0.0040	0.00
Regional Shopping Center	8,058,465	349	0.0330	0.0040	4,883,529
Apartments Mid Rise	479,094	349	0.0330	0.0040	1,225,127
General Office Building	4,819,688	349	0.0330	0.0040	7,578,110
Regional Shopping Center	2,686,674	349	0.0330	0.0040	1,628,158
Other Asphalt Surfaces	0.00	349	0.0330	0.0040	0.00

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
Unrefrigerated Warehouse-No Rail	191,555,921	0.00
User Defined Industrial	0.00	0.00
Regional Shopping Center	61,357,968	0.00
Apartments Mid Rise	4,626,610	0.00
General Office Building	49,084,800	0.00

Regional Shopping Center	20,456,638	0.00
Other Asphalt Surfaces	0.00	0.00

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Unrefrigerated Warehouse-No Rail	779	_
User Defined Industrial	0.00	_
Regional Shopping Center	870	_
Apartments Mid Rise	82.0	_
General Office Building	257	_
Regional Shopping Center	290	_
Other Asphalt Surfaces	0.00	_

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
Regional Shopping Center	Other commercial A/C and heat pumps	R-410A	2,088	< 0.005	4.00	4.00	18.0
Regional Shopping Center	Stand-alone retail refrigerators and freezers	User Defined	150	0.04	1.00	0.00	1.00
Apartments Mid Rise	Average room A/C & Other residential A/C and heat pumps	R-410A	2,088	< 0.005	2.50	2.50	10.0
Apartments Mid Rise	Household refrigerators and/or freezers	R-134a	1,430	0.12	0.60	0.00	1.00

General Office Building	Household refrigerators and/or freezers	R-134a	1,430	0.02	0.60	0.00	1.00
General Office Building	Other commercial A/C and heat pumps	R-410A	2,088	< 0.005	4.00	4.00	18.0
Regional Shopping Center	Other commercial A/C and heat pumps	R-410A	2,088	< 0.005	4.00	4.00	18.0
Regional Shopping Center	Stand-alone retail refrigerators and freezers	User Defined	150	0.04	1.00	0.00	1.00

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Equipment Type	i dei Type	Ludine her	Inditibel pel Day	riours i el Day	i ioisepowei	Load I actor

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

Equipment Type	Fuel Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor
Equipment Type	Truer type	I vullibel pel Day	Tribuis per Day	Tribura per real	l ioisebowei	Load I actor

5.16.2. Process Boilers

Equipment Type Fuel	el Type	Number	Boiler Rating (MMBtu/hr)	Daily Heat Input (MMBtu/day)	Annual Heat Input (MMBtu/yr)

5.17. User Defined

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

 Vegetation Land Use Type
 Vegetation Soil Type
 Initial Acres
 Final Acres

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type Initial Acres Final Acres Final Acres	Biomass Cover Type	Initial Acres	Final Acres
--	--------------------	---------------	-------------

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type Number Electricity Saved (kWh/year) Natural Gas Saved (btu/year)
--

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	26.0	annual days of extreme heat
Extreme Precipitation	2.80	annual days with precipitation above 20 mm
Sea Level Rise	_	meters of inundation depth
Wildfire	10.8	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (Radke et al., 2017, CEC-500-2017-008), and consider inundation location and depth for the San Francisco Bay, the Sacramento-San Joaquin River Delta and California coast resulting different increments of sea level rise coupled with extreme storm events. Users may select from four scenarios to view the range in potential inundation depth for the grid cell. The four scenarios are: No rise, 0.5 meter, 1.0 meter, 1.41 meters Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	3	0	0	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	1	0	0	N/A
Wildfire	1	0	0	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	0	0	0	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	3	1	1	3
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	1	1	1	2
Wildfire	1	1	1	2
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A

Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	1	1	1	2

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Exposure Indicators	_
AQ-Ozone	100
AQ-PM	57.4
AQ-DPM	82.8
Drinking Water	96.3
Lead Risk Housing	29.2
Pesticides	74.7
Toxic Releases	44.2
Traffic	81.0
Effect Indicators	_
CleanUp Sites	81.9
Groundwater	47.6
Haz Waste Facilities/Generators	96.8
Impaired Water Bodies	12.5
Solid Waste	0.00

Sensitive Population	
Asthma	34.7
Cardio-vascular	45.1
Low Birth Weights	75.6
Socioeconomic Factor Indicators	_
Education	39.2
Housing	89.1
Linguistic	17.3
Poverty	55.9
Unemployment	14.4

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Economic	_
Above Poverty	37.76466059
Employed	27.51186963
Median HI	26.53663544
Education	_
Bachelor's or higher	60.5800077
High school enrollment	100
Preschool enrollment	11.52316181
Transportation	_
Auto Access	62.47914795
Active commuting	28.56409598
Social	
2-parent households	37.02040293
Voting	39.83061722

Neighborhood	_
Alcohol availability	30.07827538
Park access	50.53252919
Retail density	65.94379571
Supermarket access	72.28281791
Tree canopy	43.62889773
Housing	_
Homeownership	9.303220839
Housing habitability	37.12305916
Low-inc homeowner severe housing cost burden	73.38637239
Low-inc renter severe housing cost burden	66.31592455
Uncrowded housing	31.19466188
Health Outcomes	_
Insured adults	48.58206082
Arthritis	92.2
Asthma ER Admissions	65.8
High Blood Pressure	95.2
Cancer (excluding skin)	82.6
Asthma	30.0
Coronary Heart Disease	94.7
Chronic Obstructive Pulmonary Disease	71.2
Diagnosed Diabetes	92.6
Life Expectancy at Birth	79.7
Cognitively Disabled	52.2
Physically Disabled	60.6
Heart Attack ER Admissions	32.7
Mental Health Not Good	41.5
Chronic Kidney Disease	95.6

Obesity	56.2
Pedestrian Injuries	53.3
Physical Health Not Good	67.2
Stroke	91.3
Health Risk Behaviors	_
Binge Drinking	13.6
Current Smoker	36.3
No Leisure Time for Physical Activity	67.1
Climate Change Exposures	_
Wildfire Risk	0.0
SLR Inundation Area	0.0
Children	7.3
Elderly	81.9
English Speaking	84.0
Foreign-born	37.0
Outdoor Workers	85.1
Climate Change Adaptive Capacity	_
Impervious Surface Cover	69.4
Traffic Density	74.6
Traffic Access	23.0
Other Indices	_
Hardship	54.2
Other Decision Support	_
2016 Voting	58.0

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	72.0

Healthy Places Index Score for Project Location (b)	32.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	No
Project Located in a Low-Income Community (Assembly Bill 1550)	Yes
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed.

7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

8. User Changes to Default Data

Screen	Justification
Operations: Vehicle Data	Trip characteristics taken from trip generation.
Operations: Fleet Mix	Passenger Car Mix estimated based on CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, MCY). Truck Fleet Mix based on 2, 3 and 4 axle trucks
Operations: Hearths	SCAQMD Rule 445 no wood burning devices. Wood burning devices added to gas devices.
Operations: Refrigerants	As of 1 January 2022, new commercial refrigeration equipment may not use refrigerants with a GWP of 150 or greater. Further, R-404A (the CalEEMod default) is unacceptable for new supermarket and cold storage systems as of 1 January 2019 and 2023, respectively.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

This page intentionally left blank

APPENDIX 3.2:

CALEEMOD PROPOSED PROJECT EMISSIONS MODEL OUTPUTS

14992 - Redlands RHNA Detailed Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.4. Operations Emissions Compared Against Thresholds
 - 2.5. Operations Emissions by Sector, Unmitigated
- 4. Operations Emissions Details
 - 4.1. Mobile Emissions by Land Use
 - 4.1.1. Unmitigated
 - 4.2. Energy
 - 4.2.1. Electricity Emissions By Land Use Unmitigated
 - 4.2.3. Natural Gas Emissions By Land Use Unmitigated
 - 4.3. Area Emissions by Source

- 4.3.1. Unmitigated
- 4.4. Water Emissions by Land Use
 - 4.4.1. Unmitigated
- 4.5. Waste Emissions by Land Use
 - 4.5.1. Unmitigated
- 4.6. Refrigerant Emissions by Land Use
 - 4.6.1. Unmitigated
- 4.7. Offroad Emissions By Equipment Type
 - 4.7.1. Unmitigated
- 4.8. Stationary Emissions By Equipment Type
 - 4.8.1. Unmitigated
- 4.9. User Defined Emissions By Equipment Type
 - 4.9.1. Unmitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated

- 5. Activity Data
 - 5.9. Operational Mobile Sources
 - 5.9.1. Unmitigated
 - 5.10. Operational Area Sources
 - 5.10.1. Hearths
 - 5.10.1.1. Unmitigated
 - 5.10.2. Architectural Coatings
 - 5.10.3. Landscape Equipment
 - 5.11. Operational Energy Consumption
 - 5.11.1. Unmitigated
 - 5.12. Operational Water and Wastewater Consumption
 - 5.12.1. Unmitigated
 - 5.13. Operational Waste Generation
 - 5.13.1. Unmitigated
 - 5.14. Operational Refrigeration and Air Conditioning Equipment
 - 5.14.1. Unmitigated
 - 5.15. Operational Off-Road Equipment

- 5.15.1. Unmitigated
- 5.16. Stationary Sources
 - 5.16.1. Emergency Generators and Fire Pumps
 - 5.16.2. Process Boilers
- 5.17. User Defined
- 5.18. Vegetation
 - 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated
 - 5.18.2. Sequestration
 - 5.18.2.1. Unmitigated
- 6. Climate Risk Detailed Report
 - 6.1. Climate Risk Summary
 - 6.2. Initial Climate Risk Scores
 - 6.3. Adjusted Climate Risk Scores
 - 6.4. Climate Risk Reduction Measures

- 7. Health and Equity Details
 - 7.1. CalEnviroScreen 4.0 Scores
 - 7.2. Healthy Places Index Scores
 - 7.3. Overall Health & Equity Scores
 - 7.4. Health & Equity Measures
 - 7.5. Evaluation Scorecard
 - 7.6. Health & Equity Custom Measures
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	14992 - Redlands RHNA
Operational Year	2035
Lead Agency	_
Land Use Scale	Plan/community
Analysis Level for Defaults	County
Windspeed (m/s)	2.50
Precipitation (days)	24.0
Location	34.05535, -117.218325
County	San Bernardino-South Coast
City	Redlands
Air District	South Coast AQMD
Air Basin	South Coast
TAZ	5395
EDFZ	10
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas
App Version	2022.1.1.24

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq ft)	Special Landscape Area (sq ft)	Population	Description
Apartments Mid Rise	2,436	Dwelling Unit	64.1	2,338,560	0.00	_	8,063	_

Day-Care Center	151	1000sqft	3.47	151,048	0.00	_	_	_
Other Non-Asphalt Surfaces	48.6	Acre	48.6	0.00	0.00	_	_	_

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.4. Operations Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	129	121	89.7	608	1.61	4.63	131	136	4.57	33.3	37.9	1,284	202,887	204,171	137	6.41	162	209,656
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	113	106	91.3	390	1.52	4.55	131	136	4.51	33.3	37.8	1,284	194,171	195,455	137	6.57	6.69	200,838
Average Daily (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	112	107	50.7	449	1.18	1.50	117	119	1.45	29.8	31.3	1,284	136,407	137,690	135	5.95	65.0	142,910
Annual (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	20.4	19.4	9.24	81.9	0.22	0.27	21.4	21.7	0.26	5.44	5.71	213	22,584	22,796	22.4	0.98	10.8	23,660

2.5. Operations Emissions by Sector, Unmitigated

Sector	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	52.1	47.4	40.2	442	1.29	0.66	131	132	0.62	33.3	33.9	_	132,679	132,679	4.79	5.65	159	134,641
Area	76.3	73.2	41.7	163	0.26	3.34	_	3.34	3.32	_	3.32	0.00	51,689	51,689	0.98	0.10	_	51,743
Energy	0.90	0.45	7.77	3.71	0.05	0.62	_	0.62	0.62	_	0.62	_	17,994	17,994	1.90	0.14	_	18,085
Water	_	_	_	_	_	_	_	_	_	_	_	207	525	732	21.3	0.51	_	1,417
Waste	_	_	_	_	_	_	_	_	_	_	_	1,077	0.00	1,077	108	0.00	_	3,767
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2.57	2.57
Total	129	121	89.7	608	1.61	4.63	131	136	4.57	33.3	37.9	1,284	202,887	204,171	137	6.41	162	209,656
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	49.9	45.1	43.2	369	1.21	0.66	131	132	0.62	33.3	33.9	_	124,359	124,359	4.95	5.82	4.12	126,221
Area	62.5	60.2	40.4	17.2	0.26	3.27	_	3.27	3.27	_	3.27	0.00	51,292	51,292	0.97	0.10	_	51,345
Energy	0.90	0.45	7.77	3.71	0.05	0.62	_	0.62	0.62	_	0.62	_	17,994	17,994	1.90	0.14	_	18,085
Water	_	_	_	_	_	_	_	_	_	_	_	207	525	732	21.3	0.51	_	1,417
Waste	_	_	_	_	_	_	_	_	_	_	_	1,077	0.00	1,077	108	0.00	_	3,767
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2.57	2.57
Total	113	106	91.3	390	1.52	4.55	131	136	4.51	33.3	37.8	1,284	194,171	195,455	137	6.57	6.69	200,838
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	43.5	39.2	39.2	344	1.11	0.60	117	118	0.56	29.8	30.4	_	114,102	114,102	4.42	5.28	62.4	115,849
Area	67.6	66.9	3.68	101	0.02	0.27	_	0.27	0.26	_	0.26	0.00	3,785	3,785	0.08	0.01	_	3,789
Energy	0.90	0.45	7.77	3.71	0.05	0.62	_	0.62	0.62	_	0.62	_	17,994	17,994	1.90	0.14	_	18,085
Water	_	_	_	_	_	_	_	_	_	_	_	207	525	732	21.3	0.51	_	1,417
Waste	_	_	_	_	_	_	_	_	_	_	_	1,077	0.00	1,077	108	0.00	_	3,767
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2.57	2.57

Total	112	107	50.7	449	1.18	1.50	117	119	1.45	29.8	31.3	1,284	136,407	137,690	135	5.95	65.0	142,910
Annual	_	_	_	_	_	_	<u> </u>	_	_	_	_	<u> </u>	_	_	_	_	_	_
Mobile	7.94	7.15	7.16	62.8	0.20	0.11	21.4	21.5	0.10	5.44	5.55	_	18,891	18,891	0.73	0.87	10.3	19,180
Area	12.3	12.2	0.67	18.4	< 0.005	0.05	_	0.05	0.05	_	0.05	0.00	627	627	0.01	< 0.005	_	627
Energy	0.16	0.08	1.42	0.68	0.01	0.11	_	0.11	0.11	_	0.11	_	2,979	2,979	0.32	0.02	_	2,994
Water	_	_	_	-	_	_	_	_	_	_	_	34.3	87.0	121	3.52	0.08	_	235
Waste	_	_	_	-	_	_	_	-	_	_	_	178	0.00	178	17.8	0.00	_	624
Refrig.	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	0.42	0.42
Total	20.4	19.4	9.24	81.9	0.22	0.27	21.4	21.7	0.26	5.44	5.71	213	22,584	22,796	22.4	0.98	10.8	23,660

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Apartme nts Mid Rise	33.6	30.1	28.5	323	0.97	0.49	99.3	99.8	0.46	25.2	25.7	_	99,943	99,943	3.35	4.11	120	101,372
Day-Car e Center	18.5	17.2	11.7	118	0.32	0.17	31.9	32.1	0.16	8.10	8.26	_	32,736	32,736	1.44	1.54	38.7	33,269
Other Non-Asph Surfaces	0.00 nalt	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	52.1	47.4	40.2	442	1.29	0.66	131	132	0.62	33.3	33.9	_	132,679	132,679	4.79	5.65	159	134,641

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Apartme nts Mid Rise	32.2	28.8	30.6	267	0.91	0.49	99.3	99.8	0.46	25.2	25.7	_	93,641	93,641	3.44	4.23	3.12	94,992
Day-Car e Center	17.7	16.4	12.5	102	0.30	0.17	31.9	32.1	0.16	8.10	8.26	_	30,718	30,718	1.51	1.59	1.00	31,229
Other Non-Asph Surfaces	0.00 alt	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	49.9	45.1	43.2	369	1.21	0.66	131	132	0.62	33.3	33.9	_	124,359	124,359	4.95	5.82	4.12	126,221
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Apartme nts Mid Rise	5.66	5.04	5.50	49.0	0.16	0.09	17.3	17.4	0.08	4.40	4.48	_	15,200	15,200	0.55	0.68	8.35	15,426
Day-Car e Center	2.29	2.11	1.66	13.8	0.04	0.02	4.12	4.14	0.02	1.05	1.07	_	3,691	3,691	0.18	0.19	1.99	3,754
Other Non-Asph Surfaces	0.00 alt	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	7.94	7.15	7.16	62.8	0.20	0.11	21.4	21.5	0.10	5.44	5.55	_	18,891	18,891	0.73	0.87	10.3	19,180

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_		_		_		_	_	_	_	_	_

		_													_			
Apartme Mid Rise	_	_	_	_	_	_	_	_	_	_	_	_	7,512	7,512	0.95	0.12	_	7,570
Day-Car e Center	_	_	_	_	_	_	_	_	_	_	_	_	700	700	0.09	0.01	_	705
Other Non-Aspha Surfaces	— alt	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	8,212	8,212	1.04	0.13	_	8,276
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Apartme nts Mid Rise	_	_	_	_	_	_	_	_	_	_	_	_	7,512	7,512	0.95	0.12	_	7,570
Day-Car e Center	_	_	_	_	_	_	_	_	_	_	_	_	700	700	0.09	0.01	_	705
Other Non-Aspha Surfaces	— alt	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	8,212	8,212	1.04	0.13	_	8,276
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Apartme nts Mid Rise	_	_	_	_	_	-	_	_	_	_	_	_	1,244	1,244	0.16	0.02	_	1,253
Day-Car e Center	_	_	_	_	_	_	_	_	_	_	_	_	116	116	0.01	< 0.005	_	117
Other Non-Aspha Surfaces	— alt	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	1,360	1,360	0.17	0.02	_	1,370

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
Apartme nts Mid Rise	0.79	0.40	6.79	2.89	0.04	0.55	_	0.55	0.55	_	0.55	_	8,617	8,617	0.76	0.02	-	8,641
Day-Car e Center	0.11	0.05	0.98	0.82	0.01	0.07	_	0.07	0.07	_	0.07	_	1,165	1,165	0.10	< 0.005	-	1,169
Other Non-Asph Surfaces	0.00 nalt	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	-	0.00
Total	0.90	0.45	7.77	3.71	0.05	0.62	_	0.62	0.62	_	0.62	_	9,782	9,782	0.87	0.02	_	9,809
Daily, Winter (Max)	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
Apartme nts Mid Rise	0.79	0.40	6.79	2.89	0.04	0.55	_	0.55	0.55	_	0.55	_	8,617	8,617	0.76	0.02	_	8,641
Day-Car e Center	0.11	0.05	0.98	0.82	0.01	0.07	_	0.07	0.07	_	0.07	_	1,165	1,165	0.10	< 0.005	-	1,169
Other Non-Asph Surfaces	0.00 nalt	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	-	0.00
Total	0.90	0.45	7.77	3.71	0.05	0.62	_	0.62	0.62	_	0.62	_	9,782	9,782	0.87	0.02	_	9,809
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Apartme nts Mid Rise	0.14	0.07	1.24	0.53	0.01	0.10	_	0.10	0.10	_	0.10	_	1,427	1,427	0.13	< 0.005	_	1,431

Day-Car Center	0.02	0.01	0.18	0.15	< 0.005	0.01	_	0.01	0.01	_	0.01	_	193	193	0.02	< 0.005	_	193
Other Non-Asph Surfaces	0.00 nalt	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	0.16	0.08	1.42	0.68	0.01	0.11	_	0.11	0.11	_	0.11	_	1,620	1,620	0.14	< 0.005	_	1,624

4.3. Area Emissions by Source

4.3.1. Unmitigated

Source	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Hearths	4.73	2.36	40.4	17.2	0.26	3.27	_	3.27	3.27	_	3.27	0.00	51,292	51,292	0.97	0.10	_	51,345
Consum er Products		53.4	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_
Architect ural Coatings		4.36		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Landsca pe Equipme nt	13.8	13.0	1.33	145	0.01	0.07	_	0.07	0.06	_	0.06	_	397	397	0.02	< 0.005	_	398
Total	76.3	73.2	41.7	163	0.26	3.34	_	3.34	3.32	_	3.32	0.00	51,689	51,689	0.98	0.10	_	51,743
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Hearths	4.73	2.36	40.4	17.2	0.26	3.27	_	3.27	3.27	_	3.27	0.00	51,292	51,292	0.97	0.10	_	51,345

Consum er Products	53.4	53.4	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	4.36	4.36	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	62.5	60.2	40.4	17.2	0.26	3.27	_	3.27	3.27	_	3.27	0.00	51,292	51,292	0.97	0.10	_	51,345
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Hearths	0.06	0.03	0.51	0.21	< 0.005	0.04	_	0.04	0.04	_	0.04	0.00	582	582	0.01	< 0.005	_	582
Consum er Products	9.75	9.75	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	0.80	0.80	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Landsca pe Equipme nt	1.72	1.63	0.17	18.2	< 0.005	0.01	-	0.01	0.01	_	0.01	_	45.0	45.0	< 0.005	< 0.005	_	45.1
Total	12.3	12.2	0.67	18.4	< 0.005	0.05	_	0.05	0.05	_	0.05	0.00	627	627	0.01	< 0.005	_	627

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Apartme nts Mid Rise	_	_	_	_	_	_	_	_	_	_	_	195	494	688	20.0	0.48	_	1,332

Day-Car Center	_	_	_	_	_	_	_	_	_	_	_	12.4	31.5	43.9	1.28	0.03	_	85.0
Other Non-Asph Surfaces	— alt	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00		0.00
Total	_	_	_	_	_	_	_	_	_	_	_	207	525	732	21.3	0.51	_	1,417
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Apartme nts Mid Rise	_	_	_	_	_		_	_	_	_	_	195	494	688	20.0	0.48	_	1,332
Day-Car e Center	_	_	_	_	_	_	_	_	_	_	_	12.4	31.5	43.9	1.28	0.03	_	85.0
Other Non-Asph Surfaces	— alt	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	207	525	732	21.3	0.51	_	1,417
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Apartme nts Mid Rise	_	_	-	_	_	_	_	_	_	_	-	32.2	81.8	114	3.31	0.08	_	221
Day-Car e Center	_	_	_	_	_	_	_	_	_	_	_	2.06	5.22	7.27	0.21	0.01	_	14.1
Other Non-Asph Surfaces	— alt	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total												34.3	87.0	121	3.52	0.08		235

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	-	_	-	_	_	_	_	_	_	_	_	_	_	-	_	_
Apartme nts Mid Rise	_	_	_	_	_	_	_	_	_	_	_	971	0.00	971	97.0	0.00	-	3,396
Day-Car e Center	_	_	_	_	_	_	_	_	_	_	_	106	0.00	106	10.6	0.00	-	370
Other Non-Asph Surfaces	— alt	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	1,077	0.00	1,077	108	0.00	_	3,767
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Apartme nts Mid Rise	_	_	_	_	_	_	_	_	_	_	_	971	0.00	971	97.0	0.00	_	3,396
Day-Car e Center	_	_	_	_	_	_	_	_	_	_	_	106	0.00	106	10.6	0.00	_	370
Other Non-Asph Surfaces	_ alt	-	_	_	_	_	_	_	_	_	-	0.00	0.00	0.00	0.00	0.00	-	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	1,077	0.00	1,077	108	0.00	_	3,767
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Apartme nts Mid Rise	_	_	_	_	_	_	_	_	_	_	_	161	0.00	161	16.1	0.00	_	562

Day-Car e Center	_	_		_	_	_	_	_	_	_	_	17.5	0.00	17.5	1.75	0.00	_	61.3
Other Non-Asph Surfaces	— palt	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	178	0.00	178	17.8	0.00	_	624

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Land	TOG	ROG	NOx					PM10T	PM2.5E			BCO2	NBCO2	CO2T	CH4	N2O	Ь	CO2e
Use Use	IOG	ROG	NOX		302	PIVITUE	PIVITUD	PIVITUT	PIVIZ.5E	PIVIZ.5D	PIVIZ.5	ВСО2	NBCO2	C021	CH4	N2U	R	COZe
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Apartme nts Mid Rise	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2.46	2.46
Day-Car e Center	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.11	0.11
Total	_	_	_	_	_	_	<u> </u>	_	_	_	_	_		_	_	_	2.57	2.57
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Apartme nts Mid Rise	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2.46	2.46
Day-Car e Center	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	0.11	0.11
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2.57	2.57

Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Apartme nts Mid Rise	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.41	0.41
Day-Car e Center	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.02	0.02
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.42	0.42

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme nt Type	TOG	ROG				PM10E			PM2.5E			BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Equipme Type	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	_	-	_	-	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	<u> </u>		<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_	_

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Equipme nt Type	TOG	ROG		со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Vegetatio n	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Land Use	TOG			со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total		_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Species	TOG	ROG	NOx	CO	SO2			b/day for PM10T				BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Sequest	_	_	_	-	_	_	_	_	_	_	-	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_		_	_	_		_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

5. Activity Data

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Apartments Mid Rise	11,059	11,133	9,184	3,942,701	139,204	140,124	115,594	49,626,266
Day-Care Center	7,193	58.9	55.9	1,881,285	45,033	688	653	11,810,581
Other Non-Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

Hearth Type	Unmitigated (number)
Apartments Mid Rise	_
Wood Fireplaces	0
Gas Fireplaces	2436
Propane Fireplaces	0

Electric Fireplaces	0
No Fireplaces	0

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
4735584	1,578,528	226,572	75,524	127,047

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	250

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Apartments Mid Rise	10,514,171	261	0.0330	0.0040	26,886,569
Day-Care Center	979,777	261	0.0330	0.0040	3,636,128
Other Non-Asphalt Surfaces	0.00	261	0.0330	0.0040	0.00

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
Apartments Mid Rise	101,535,342	0.00

Day-Care Center	6,478,403	0.00
Other Non-Asphalt Surfaces	0.00	0.00

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Apartments Mid Rise	1,801	_
Day-Care Center	196	_
Other Non-Asphalt Surfaces	0.00	_

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
Apartments Mid Rise	Average room A/C & Other residential A/C and heat pumps	User Defined	750	< 0.005	2.50	2.50	10.0
Apartments Mid Rise	Household refrigerators and/or freezers	User Defined	150	0.12	0.60	0.00	1.00
Day-Care Center	User Defined	User Defined	150	0.02	0.60	0.00	1.00
Day-Care Center	Other commercial A/C and heat pumps	User Defined	750	< 0.005	4.00	4.00	18.0
Day-Care Center	Stand-alone retail refrigerators and freezers	User Defined	150	< 0.005	1.00	0.00	1.00
Day-Care Center	Walk-in refrigerators and freezers	User Defined	150	< 0.005	7.50	7.50	20.0

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Equipmont typo	1 401 1370	Engine no	rtambor por Bay	riodio i oi bay	1 loloopoli ol	2000 1 00101

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

Equipment Type	Fuel Type	Number per Dev	Hours per Doy	Hours per Voor	Horoopowor	Load Footor
Equipment Type	ruei Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor

5.16.2. Process Boilers

Equipment Type	Fuel Type	Number	Boiler Rating (MMBtu/hr)	Daily Heat Input (MMBtu/day)	Annual Heat Input (MMBtu/yr)

5.17. User Defined

Equipment Type	Fuel Type
	· doi: type

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres
vogetation Earla 600 Type	vogotation con Typo	Titlai 7 toros	Tillal / toros

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type Initial Acres Final Acres

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type Number Electricity Saved (kWh/year) Natural Gas Saved (btu/year)

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	26.0	annual days of extreme heat
Extreme Precipitation	2.80	annual days with precipitation above 20 mm
Sea Level Rise	_	meters of inundation depth
Wildfire	10.8	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (Radke et al., 2017, CEC-500-2017-008), and consider inundation location and depth for the San Francisco Bay, the Sacramento-San Joaquin River Delta and California coast resulting different increments of sea level rise coupled with extreme storm events. Users may select from four scenarios to view the range in potential inundation depth for the grid cell. The four scenarios are: No rise, 0.5 meter, 1.41 meters

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Evnocuro Scoro	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Cilitiale Hazaru	Exposure Score	Sensitivity Score	Adaptive Capacity Score	vullerability ocore

Temperature and Extreme Heat	3	0	0	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	1	0	0	N/A
Wildfire	1	0	0	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	0	0	0	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	3	1	1	3
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	1	1	1	2
Wildfire	1	1	1	2
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	1	1	1	2

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Exposure Indicators	_
AQ-Ozone	100
AQ-PM	57.4
AQ-DPM	82.8
Drinking Water	96.3
Lead Risk Housing	29.2
Pesticides	74.7
Toxic Releases	44.2
Traffic	81.0
Effect Indicators	_
CleanUp Sites	81.9
Groundwater	47.6
Haz Waste Facilities/Generators	96.8
Impaired Water Bodies	12.5
Solid Waste	0.00
Sensitive Population	_
Asthma	34.7
Cardio-vascular	45.1
Low Birth Weights	75.6
Socioeconomic Factor Indicators	_

Education	39.2
Housing	89.1
Linguistic	17.3
Poverty	55.9
Unemployment	14.4

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Economic	_
Above Poverty	37.76466059
Employed	27.51186963
Median HI	26.53663544
Education	_
Bachelor's or higher	60.5800077
High school enrollment	100
Preschool enrollment	11.52316181
Transportation	_
Auto Access	62.47914795
Active commuting	28.56409598
Social	_
2-parent households	37.02040293
Voting	39.83061722
Neighborhood	_
Alcohol availability	30.07827538
Park access	50.53252919
Retail density	65.94379571

72.28281791
43.62889773
_
9.303220839
37.12305916
73.38637239
66.31592455
31.19466188
_
48.58206082
92.2
65.8
95.2
82.6
30.0
94.7
71.2
92.6
79.7
52.2
60.6
32.7
41.5
95.6
56.2
53.3

Stroke	91.3
Health Risk Behaviors	_
Binge Drinking	13.6
Current Smoker	36.3
No Leisure Time for Physical Activity	67.1
Climate Change Exposures	_
Wildfire Risk	0.0
SLR Inundation Area	0.0
Children	7.3
Elderly	81.9
English Speaking	84.0
Foreign-born	37.0
Outdoor Workers	85.1
Climate Change Adaptive Capacity	_
Impervious Surface Cover	69.4
Traffic Density	74.6
Traffic Access	23.0
Other Indices	_
Hardship	54.2
Other Decision Support	_
2016 Voting	58.0

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	72.0
Healthy Places Index Score for Project Location (b)	32.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	No

Project Located in a Low-Income Community (Assembly Bill 1550)	Yes
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed.

7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

8. User Changes to Default Data

Screen	Justification
Operations: Vehicle Data	Trip characteristics taken from Trip Generation
Operations: Hearths	SCAQMD Rule 445 no wood burning devices. Wood burning devices added to gas devices.
Operations: Architectural Coatings	SCAQMD Rule 1113
Operations: Refrigerants	As of 1 January 2022, new commercial refrigeration equipment may not use refrigerants with a GWP of 150 or greater. Further, R-404A (the CalEEMod default) is unacceptable for new supermarket and cold storage systems as of 1 January 2019 and 2023, respectively. Beginning 1 January 2025, all new air conditioning equipment may not use refrigerants with a GWP of 750 or greater.

This page intentionally left blank

