CITY OF REDLANDS RHNA REZONE

PROPOSED CONDITIONS INFRASTRUCTURE REPORT FOR WATER AND SEWER

CITY OF REDLANDS

SAN BERNARDINO COUNTY, CALIFORNIA

PREPARED FOR:

EPD Solutions 2 Park Plaza, Suite 1120 Irvine, CA 92614

PREPARED BY:

FUSCOE ENGINEERING, INC. 15535 Sand Canyon Ave, Unit 100 Irvine, CA 92618 949.474.1960 www.fuscoe.com

DATE PREPARED: OCTOBER 16, 2024

TABLE OF CONTENTS

1. I	NTRODUCTION	4	
1.1	Project Description	4	
1.2	Scope Of Work	4	
1.3	Land Use Description	4	
2. \	WATER		
2.1	Water System Environmental Setting & Infrastructure	10	
2.2	Existing Water Demands		
2.3	Proposed Water Demands	16	
2.4	Water System Capacity Assessment		
2	2.4.1 Water Capital Improvement Plans		18
2.5	Proposed Land Use and CEQA Threshold Analysis		
3. 9	SEWER	21	
3.1	Sewer System Environmental Setting & Infrastructure	21	
3.2	Existing Wastewater Generation	24	
3.3	Proposed Wastewater Generation		
3.4	Sewer System Capacity Assessment		
3	3.4.1 Sewer Capital Improvement Plans		29
3.5	Proposed Condition and CEQA Threshold Analysis		
4.	APPENDICES		

LIST OF FIGURES

Figure 1 City of Redlands RHNA Rezone Aerial Extent	6
Figure 2 City of Redlands RHNA Rezone Existing Land Use Zoning	7
Figure 3 City of Redlands RHNA Rezone Existing Water System Facilities	13
Figure 4 City of Redlands RHNA Rezone Water System Pressure Zones	14
Figure 5 City of Redlands RHNA Rezone Proposed Water System Facilities	19
Figure 6 City of Redlands RHNA Rezone Existing Sewer System Facilities	23
Figure 7 City of Redlands RHNA Rezone Proposed Sewer System Facilities	28

LIST OF TABLES

Table 1 - Existing General Plan Buildout	5
Table 2 - Proposed General Plan Buildout	
Table 3 - Comparison of Approved General Plan Buildout to Proposed Project	
Table 4 – City of Redlands WSMP Water Use Factors	
Table 5 – Redlands RHNA Rezone Existing Water Demands	

Table 7 - Redlands RHNA Rezone Net Change in Water Demands17Table 8 - Redlands RHNA Net Change in Water Demand Per Rezone Area17Table 9 - City of Redlands 2020 Wastewater Collection (AFY)24Table 10 - City of Redlands WWMP Sewer Flow Factors24Table 11 - Redlands RHNA Rezone Existing Wastewater Generation25Table 12 - Redlands RHNA Rezone Proposed Wastewater Generation25Table 13 - Redlands RHNA Rezone Net Change in Wastewater Generation26Table 14 - City of Redlands Existing and Projected Sewer Flows26Table 15 - Available Wastewater Capacity27Table 16 - WWMP Recommended Sewer Upgrades29	Table 6 – Redlands RHNA Rezone Proposed Water Demands	16
Table 9 - City of Redlands 2020 Wastewater Collection (AFY)24Table 10 - City of Redlands WWMP Sewer Flow Factors24Table 11 - Redlands RHNA Rezone Existing Wastewater Generation25Table 12 - Redlands RHNA Rezone Proposed Wastewater Generation25Table 13 - Redlands RHNA Rezone Net Change in Wastewater Generation26Table 14 - City of Redlands Existing and Projected Sewer Flows26Table 15 - Available Wastewater Capacity27	Table 7 – Redlands RHNA Rezone Net Change in Water Demands	17
Table 10 – City of Redlands WWMP Sewer Flow Factors24Table 11 – Redlands RHNA Rezone Existing Wastewater Generation25Table 12 – Redlands RHNA Rezone Proposed Wastewater Generation25Table 13 – Redlands RHNA Rezone Net Change in Wastewater Generation26Table 14 – City of Redlands Existing and Projected Sewer Flows26Table 15 – Available Wastewater Capacity27	Table 8 – Redlands RHNA Net Change in Water Demand Per Rezone Area	17
Table 11 – Redlands RHNA Rezone Existing Wastewater Generation25Table 12 – Redlands RHNA Rezone Proposed Wastewater Generation25Table 13 – Redlands RHNA Rezone Net Change in Wastewater Generation26Table 14 – City of Redlands Existing and Projected Sewer Flows26Table 15 – Available Wastewater Capacity27	Table 9 – City of Redlands 2020 Wastewater Collection (AFY)	24
Table 12 – Redlands RHNA Rezone Proposed Wastewater Generation	Table 10 – City of Redlands WWMP Sewer Flow Factors	24
Table 13 – Redlands RHNA Rezone Net Change in Wastewater Generation	Table 11 – Redlands RHNA Rezone Existing Wastewater Generation	25
Table 14 – City of Redlands Existing and Projected Sewer Flows	Table 12 – Redlands RHNA Rezone Proposed Wastewater Generation	25
Table 15 – Available Wastewater Capacity	Table 13 – Redlands RHNA Rezone Net Change in Wastewater Generation	26
	Table 14 – City of Redlands Existing and Projected Sewer Flows	26
Table 16 – WWMP Recommended Sewer Upgrades	Table 15 – Available Wastewater Capacity	27
	Table 16 – WWMP Recommended Sewer Upgrades	29

APPENDICES

Appendix A Water Demand Calculations

Appendix B Wastewater Generation Calculations

Appendix C Sewer Capacity Calculations

1. INTRODUCTION

1.1 PROJECT DESCRIPTION

The City of Redlands ("City") is currently undergoing a General Plan Amendment (GPA), specific plan amendment, and zone change in order to rezone certain properties to accommodate for additional residential development in the City pursuant to the City's Housing Element. A General Plan is the principal long-range policy and planning document for guiding California cities and counties' physical development, conservation, and enhancement of. As part of the GPA and the California Environmental Quality Act (CEQA), infrastructure such as water and sewer systems that support the existing and proposed land uses will be evaluated at a programmatic level in connection with the proposed land use changes and focus areas.

1.2 SCOPE OF WORK

The City of Redlands is situated at the base of the San Bernardino Mountains in San Bernardino County and is approximately 60 miles east of Los Angeles and 45 miles west of Palm Springs. It lies along the Interstate 10 (I-10) corridor, connecting! it to cities like San Bernardino, Fontana, Ontario, and Los Angeles to the west, and Yucaipa, Beaumont, and Coachella Valley to the east. State Route 210 (SR-210) begins in the City and moves northwest, reaching Highland and Pasadena. The proposed Housing Element Regional Housing Needs Allocation (RHNA) encompasses 196 housing sites and Site 24 needs a zone change to align with existing school use and future surrounding residential uses. The sites are divided into two areas: Sites 1 through 16A and 24, located in the western part of the City within the East Valley Corridor Specific Plan (EVCSP), and Sites 17 through 23, situated northeast of the first group and near SR-210, just south of East San Bernardino Boulevard in North Redlands, close to I-10 and Downtown Redlands. These rezone sites are part of the Housing Element Sites Inventory, which is crucial for meeting housing targets within the City. See Figure 1 for an aerial extent of the Redlands RHNA Rezone area.

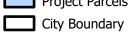
This infrastructure assessment report describes the primary water and sewer infrastructure systems that support the City of Redlands and those areas specifically within the proposed GPA rezone areas. As part of the California Environmental Quality Act (CEQA) process, infrastructure, and utilities that support the existing and proposed land uses will be analyzed at a level consistent with the program level of an Environmental Impact Report ("EIR"). This report will evaluate the existing conditions of the infrastructure systems that serve the City's proposed rezone sites ("Project" or "RHNA Rezone"). Under the proposed GPA, the proposed buildout and land use changes will alter demands on existing infrastructure and utilities. The analysis within this report will review, identify, and summarize the effects of the proposed conditions on the existing infrastructure within the water and sewer systems. Any significant deficiencies will be identified, along with the tools available to address them, including any major Capital Improvements Plans (CIP) to remedy existing or prospective deficiencies within the City's RHNA Rezone.

1.3 LAND USE DESCRIPTION

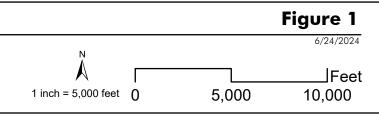
Under the City's existing General Plan Update (GPU), which was certified in July 2017, the report provided a long-term policy and plan of action for the City through the year 2035. Under the 2017 GPU the City projected that the areas being considered for rezoning would initially encompass 116.2 acres of land with a mix of 111, Medium Density Residential (MDR) and High Density Residential (HDR) residential dwelling units (DUs), in addition to approximately 2.2 million non-residential Commercial/Industrial and Commercial/Admin Professional square feet (SF). See Figure 2 and Table 1 below for a breakdown of the City's existing zoning designations within the proposed RHNA Rezone areas.

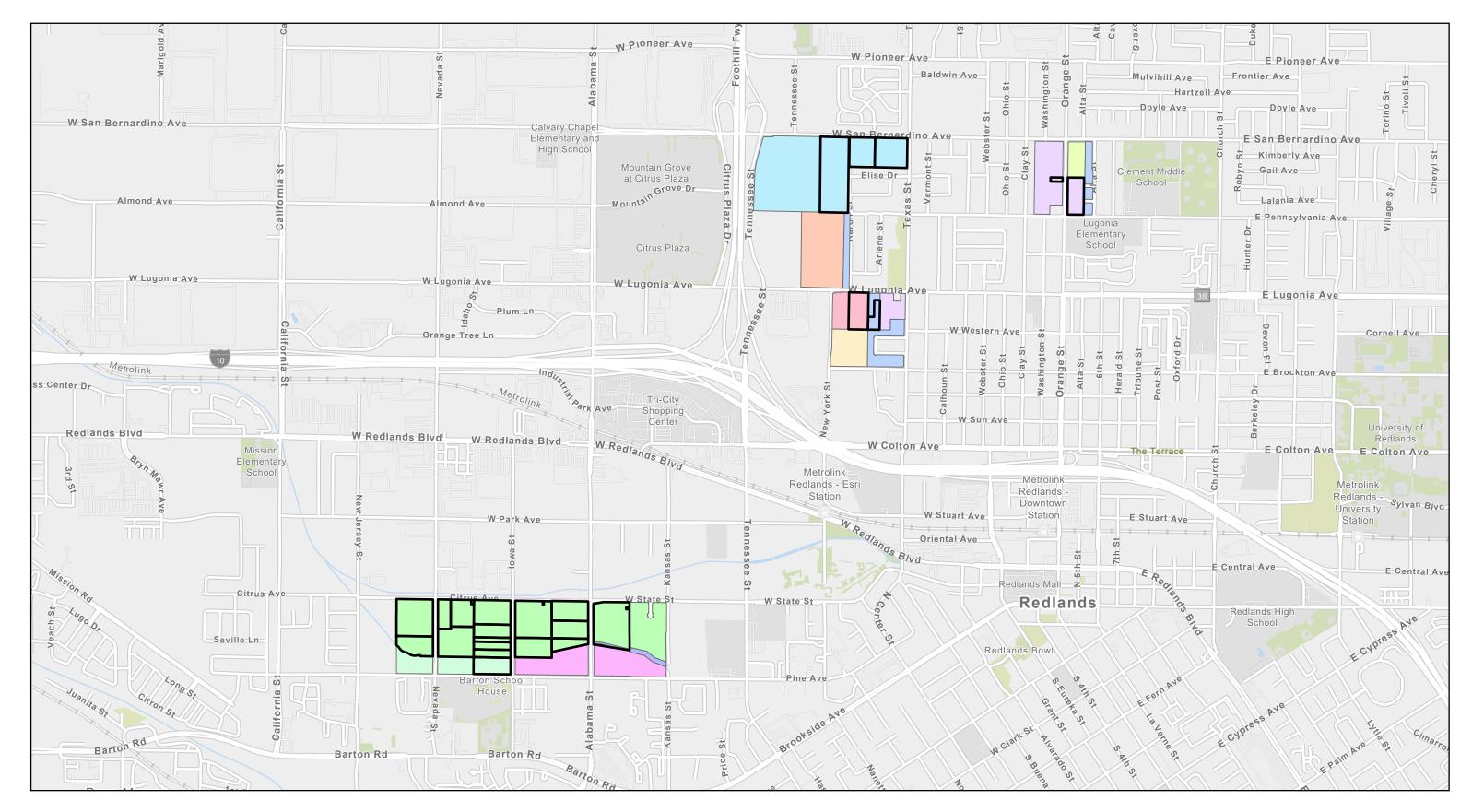
Plot Number	Acres	General Plan Land Use Designation	Zoning	Residential Buildout Capacity (DU)	Non- Residential Buildout Capacity (SF)
1	8.91	Commercial/ Industrial	EV/IC		194,060
2	4.26	Commercial/Industrial	EV/IC		92,783
3	5.84	Commercial/Industrial	EV/IC		127,195
4	3.15	Commercial/Industrial	EV/IC		68,607
5	1.07	Commercial/Industrial	EV/IC		23,305
6	1.9	Commercial/Industrial	EV/IC		41,382
7	1.9	Commercial/Industrial	EV/IC		41,382
8	4.07	MDR	EV3000RM	40	
9	2.5	Commercial/Industrial	EV/IC		54,450
10	4.03	Commercial/Industrial	EV/IC		87,773
10A	0.08	Commercial/Industrial	EV/IC		1,742
11	4.70	Commercial/Industrial	EV/IC		102,366
12	2.31	Commercial/Industrial	EV/IC		50,312
13	4.70	Commercial/Industrial	EV/IC		103,019
14	4.21	Commercial/Industrial	EV/IC		91,694
15	8.86	Commercial/Industrial	EV/IC		192,971
15A	0.02	Commercial/Industrial	EV/IC		436
16	10.7	Commercial/Industrial	EV/IC		231,957
16A	0.01	Commercial/Industrial	EV/IC		218
17	14.05	Commercial/Admin Professional	CP-4		306,009
18	5	Commercial/Admin Professional	CP-4		108,900
19	6.31	Commercial/Admin Professional	CP-4		137,432
20	4.76	MDR	A-1	1	
21	1.64	MDR	R-1	9	
22	0.33	HDR	R-2	4	
23	3.96	HDR	HDR R-2 57		
24	6.94	Commercial/Industrial	EV/IC		151,048
Total	116			111	2,209,040
Source: City	of Redland	ds RHNA Rezone, Project Descriptio	n "Table 3-1 Existi	ng General Plan Buil	dout"

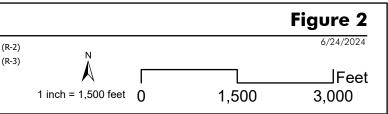
Table 1 - Existing General Plan Buildout



City of Redlands RHNA Rezone Aerial Extent


Redlands, CA





X:\Projects\1448\06\MXD\1_AerialExtent.aprx

City of Redlands RHNA Rezone Existing Land Use Zoning Redlands, CA Project Parcels Image: Project Parcels Commercial/Industrial (EV/IC)

LAND USE AND HOUSING ELEMENT

The City of Redlands 2021-2029 Housing Element outlines how the City plans to meet its housing needs as mandated by the California Department of Housing and Community Development (HCD) through the Regional Housing Needs Assessment (RHNA). The Southern California Association of Governments (SCAG), the regional planning agency for Southern California, assigned the City a target of 3,516 new housing units to be incorporated by 2029. To comply with this RHNA assignment, the City prepared a Housing Element covering the period from October 15, 2021, to October 15, 2029. This plan was adopted on February 1, 2022, and includes measures to increase residential zoning capacity and promote various housing types and affordability levels. Thus, the Housing Element identified 196 sites suitable for new housing, with 23 requiring rezoning to support medium and high-density residential developments.

PROPOSED GENERAL PLAN AMENDMENT

As a result of the land use and housing element the City of Redlands is proposing a General Plan Amendment (GPA) to change the land use designations of multiples sites from Commercial/Industrial or Commercial/Administrative Professional to Medium Density Residential or High Density Residential. The 24 sites identified within the land use and housing element have a capacity for up to 2,436 housing units and 151,048 square feet of Public/Institutional space, with development anticipated through 2035. Although, no specific development project is currently proposed, this report will address and analyze the impacts of developing the maximum buildout under the new rezoning standards.

See Table 2 below for a specific breakdown of the City's proposed rezone sites and maximum buildout plans under the GPA.

Site Number	Proposed GP Land Use Designation	Proposed Zoning	Proposed Density (DU/acre)	Acres	Propo Maxin Build	num
1	MDR	R-2	15	8.91	133	DU
2	MDR	R-2	15	4.26	63	DU
3	HDR	R-3	30	5.84	175	DU
4	HDR	R-3	30	3.15	94	DU
5	HDR	R-3	30	1.07	32	DU
6	HDR	R-3	30	1.9	57	DU
7	HDR	R-3	30	1.9	57	DU
8	MDR	EV2500RM	15	4.07	61	DU
9	HDR	R-3	30	2.5	75	DU
10	HDR	R-3	30	4.03	120	DU
10A	MDR	R-3	30	0.08	2	DU
11	MDR	R-2	15	4.7	70	DU
12	MDR	R-2	15	2.31	34	DU
13	HDR	R-3	30	4.73	141	DU
14	HDR	R-3	30	4.21	126	DU
15	HDR	R-3	30	8.86	265	DU
15A	HDR	R-3	30	0.02	1	DU

Table 2 - Proposed General Plan Buildout

Site Number	umber Proposed GP Land Proposed Use Designation Zoning		Proposed Density (DU/acre)	Acres	Propo Maxim Builde	um		
16	MDR	R-2 15		10.7	159	DU		
16A	MDR	R-2	15	0.01	-	DU		
17	MDR	R-2	15	14.1	210	DU		
18	HDR	R-3	30	5	150	DU		
19	HDR	R-3	30	6.31	189	DU		
20	MDR	R-2	15	4.76	71	DU		
21	MDR	R-2	15	1.64	24	DU		
22	HDR	R-3	30	0.33	9	DU		
23	HDR	R-3	30	3.96	118	DU		
24 Public/Institutional (PI)		EV/IP	0.5 Floor Area Ratio (FAR)	6.94	151,048	SF		
	Total 116 2,436 DU							
Source: City of Redla	nds RHNA Rezone, Project De	scription "Table 3-	2: Proposed Genera	l Plan Bui	ildout"			

As shown in the table above, the GPA would propose a zone change for all sites to enable medium and high-density residential development, with the exception of Site 24 which would change to Public/ Institutional uses.

To see a summary of the City's approved general plan buildout to the proposed GPA buildout see Table 3 below.

		Sites	1-16A	Sites	17-24		_	Proposed Project
Land Use	Unit	Approved GP	Proposed Project	Approved GP	Proposed Project	GP Total	Proposed Total	minus Approved GP
Commercial/ Institutional	SF	1,505,651	-	151,048	-	1,656,700	-	(1,656,700)
Commercial	SF	-	-	552,341	-	552,341	-	(552,341)
Public/ Institutional	SF	-	-	-	151,048	-	151,048	151,048
MDR	DU	40	522	10	305	50	825	777
HDR	DU	-	1,143	61	466	61	1,611	1,548
Total Residential	DU	40	1,665	71	771	111	2,436	2,325
Total Nonresidential	SF	1,505,651	-	703,389	151,048	2,209,041	151,048	(2,057,992)
Source: City of Red to Proposed Projec		HNA Rezone	, Project Deso	cription "Tabl	e 3 3: Compa	rison of Appro	oved General	Plan Buildout

Table 3 - Comparison of Approved General Plan Buildout to Proposed Project

As shown above, the proposed project aims to convert approximately 2,057,992 SF of planned nonresidential land uses to residential land uses to accommodate up to 2,436 housing units.

2. WATER

2.1 WATER SYSTEM ENVIRONMENTAL SETTING & INFRASTRUCTURE

CITY OF REDLANDS

The City's water service area includes about 72,000 residents in its water supply system. To ensure reliable water supply distribution the City operates an extensive network of water facilities. Some of these facilities include distribution pipelines, two water treatment plants, storage reservoirs, and booster stations. The City's water system infrastructure is divided into three main categories: Non-Potable Water (NPW), Potable Water (PW), and Recycled Water (RW). Each system is designed to serve specific demands and utilizes different water sources and treatment processes to ensure safe and reliable water delivery. These water system facilities support the City's efforts to provide reliable water supply, and meeting existing and future demands through regular monitoring, maintenance, and improvements plans. These facilities are described in more detail below.

POTABLE WATER SYSTEM (PW)

<u>Water Treatment Plants (WTPs</u>). The City operates two major water treatment plants, the Tate WTP and the Hinckley WTP. These facilities treat surface water and groundwater to meet drinking water standards. The Tate WTP has a capacity of 14 million gallons per day (MGD), while the Hinckley WTP has a capacity of 12 MGD. The primary processes provided at the WTPs include coagulation, flocculation, sedimentation, filtration, and disinfection.

<u>Distribution Network</u>: The City's potable water distribution system includes a network of approximately 466 miles of pipelines ranging from 6 to 60 inches in diameter, 13 storage reservoirs with a total capacity of 51.6 million gallons, and 12 booster stations. This distribution network ensures the delivery of treated water to residential, commercial, and institutional users throughout the City. Infrastructure throughout the City is strategically placed to maintain the water systems pressure and storage capacity.

NON-POTABLE WATER SYSTEM (NPW)

<u>Distribution Network</u>: The non-potable water system primarily supplies water for irrigation and industrial uses. NPW is sourced from untreated groundwater and surface water. The NPW system includes separate pipelines and storage facilities that deliver water to parks, golf courses, and large landscaped areas. Specifically, infrastructure for NPW specifically includes 15 miles of pipelines ranging in size from 4 to 36 inches in diameter, and storage tanks with a total capacity of 7.5 million gallons, which are separate from the potable water system to prevent cross-contamination. This system is essential for the City in its efforts to conserve potable water by using NPW water where appropriate.

RECYCLED WATER SYSTEM (RW)

<u>Treatment Process</u>: Recycled water is produced from treated wastewater at the City's wastewater treatment plant, which has a capacity of 9.5 MGD. This water undergoes advanced treatment processes, including secondary and tertiary treatment, to remove contaminants and meet regulatory standards for non-potable reuse.

<u>Distribution Network</u>: Specifically, the recycled water system includes 30 miles of pipelines ranging in diameter of 4 to 24 inches, and the system distributes treated effluent for landscape

irrigation, industrial cooling, and other non-potable applications. This system helps reduces City's potable water demands and promotes sustainable water use.

PRESSURE ZONES

The City's water distribution system is divided into multiple pressure zones to ensure the consistent delivery of water across its varying elevations and demand areas. These zones are designed to maintain adequate water pressure for all demands, prevent excessive pressure that could damage infrastructure, and optimize the operational efficiency of the water system. Each pressure zone is managed through a network of booster stations, reservoirs, and pressure-reducing valves (PRVs) that regulate and stabilize water pressure. The PRVs system provides real-time data allowing for operation adjustments in response to demand changes, which stabilize the distribution network.

PRESSURE ZONE 1570 - RHNA REZONE AREA

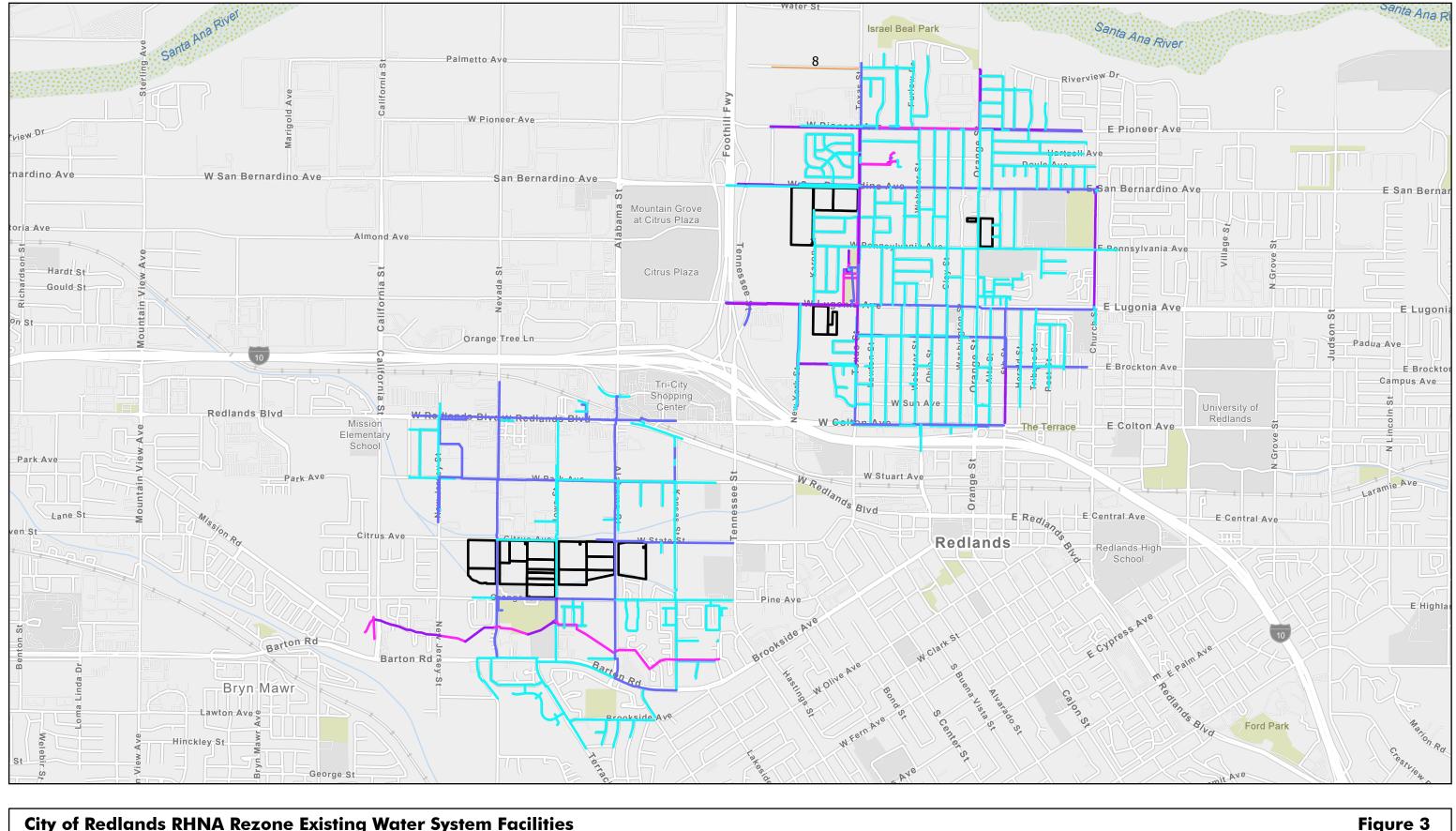
All RHNA Rezone areas within the City are located within Pressure Zone 1570, which is equipped with a range of infrastructure designed to manage water distribution effectively at higher elevations. This zone includes a reservoir known as the 1570 Zone Reservoir, which has a capacity of approximately 2.5 million gallons. This reservoir helps to store and regulate water pressure and ensure efficient distribution within the RHNA Rezone areas.

To support the elevation needs of Zone 1570, the area is serviced by a primary booster station, that is equipped with multiple pumps with speed controls, allowing for adjustments in flow rates and maintaining consistent pressures. The function of this booster station is crucial as it "lifts" water from lower elevation zones up to the 1570 Zone, which ensures a steady and reliable water supply throughout the City.

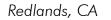
The pipeline network within Pressure Zone 1570 includes pipelines of various sizes, designed to handle the increased pressure required for higher elevations. The primary pipelines in the RHNA Rezone Areas range from 12 inches to 24 inches in diameter, with a few areas with distribution pipeline sizes as small as 6-inches or as large as 16-inches in diameter. These larger diameter pipelines are necessary for maintaining adequate flow rates, velocities, and pressures to support both residential and commercial water needs.

Recycled water is treated effluent from the City's WWTP and is primarily used for equipment cooling at the SCE Mountain View Power Plant, dust control at the City landfill, and for landscape irrigation customers. There are no current recycled water facilities serving the rezone areas.

Managing water pressure in Zone 1570 involves addressing challenges such as potential pressure fluctuations due to changes in demand and elevation variations. However, the use of advanced monitoring and control systems, such as the pressure-reducing valves (PRVs), helps to mitigate these issues by providing real-time data on pressure levels and allowing for rapid adjustments.


Throughout the City, water pressures vary, and the City maintains GIS data on water pressure layers covering the City, along with layers for pipe sizes. Based on the GIS data, the rezone areas fall within the following pressures and are serviced by the following watermain sizes:

• The southwest rezone area has pressures that range from 140 pounds per square inch (PSI) at the easterly portion to 160 psi at the westerly portion, with watermain pipe sizes in the 8-inch to 12-inch range.

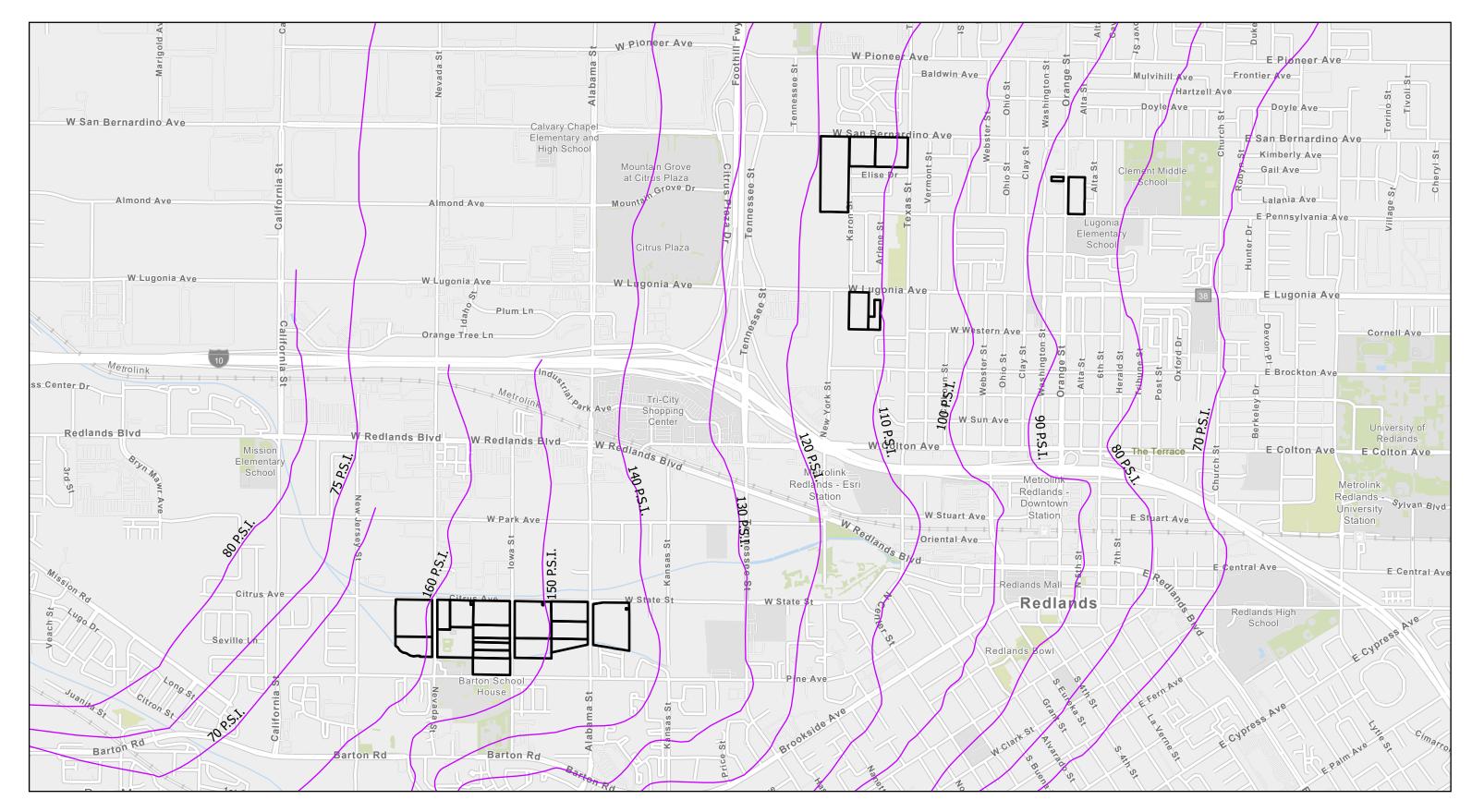

- The northeast rezone area has pressures in the 80 psi to 90 psi range, with watermain pipe sizes ranging from 6-inch to 8-inch.
- The north (central) and northwest rezone areas have pressures in the 110 psi to 120 psi range, with watermain pipe sizes ranging from 8-inch to 16-inch distribution lines, along with a 30-inch transmission line.

Based on American Water Works Association (AWWA) standards, the static pressure for a water system is recommended to be between 45 psi and 80 psi, with a maximum pressure of up to 150 psi. Based on this criteria, most of the RHNA areas may require pressure-reducing valves to maintain acceptable pressures.

See Figure 3 for a view of the water system facilities within the RHNA Rezone area and Figure 4 for a view of the City's pressure zones.

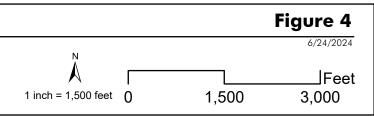
City of Redlands RHNA Rezone Existing Water System Facilities




Project Parcels Water Mains - < 9" 9" to 12"

- 18" to 30"

X:\Projects\1448\06\MXD\Exhibits\3_water.aprx


NGINEER

City of Redlands RHNA Rezon	e Water System Pressure Zones	
Redlands, CA	Pressure Lines — 120 P.S.I.	160 P.S.I 90 P.S.I.
	—— 100 P.S.I. —— 130 P.S.I.	70 P.S.I. Project Parcels
	—— 110 P.S.I. —— 140 P.S.I.	—— 75 P.S.I.
PULL CIRCLE THINKING	—— 150 P.S.I.	80 P.S.I.

X:\Projects\1448\06\MXD\Exhibits\4_sewer.aprx

2.2 EXISTING WATER DEMANDS

LOCAL – THE RHNA REZONE AREA

As described previously, the City is proposing a GPA and zone change to rezone 24 different sites from commercial/industrial sites to residential and public/institutional uses. Doing so will allow the City to meet its RHNA requirements, as the rezoned areas will accommodate up 2,436 residential DUs and 151,048 non-residential SF, in comparison to the existing 2017 GPU land uses. The following tables will present a detailed analysis of the City's water use factors and water demands for various land use designations under the existing GPU and proposed GPA project. These factors are necessary to understand how current water demands will be altered when projecting future water needs under the RHNA Rezone project.

Water Use Factors: The water use factors used to estimate the City's existing and proposed water demands are normally based on the City-wide 2022 Water Systems Master Plan (WSMP), which expresses demand in acre-feet per year per acre (AFY/Acre) for different land uses. These factors were developed through an analysis of historical water usage data across various land use categories, including residential, commercial, industrial, and agricultural sectors. The water use factor in the 2022 WSMP lumps all multi-family residential into one category and does not differentiate between medium density and high-density land uses. Therefore, an alternative approach was utilized to estimate water demands for different multi-family densities. The RHNA Rezone project allows for a density of 15 to 30 dwelling units per acre. Thus, the alternative method applied relies on sewage flow factors from the City-wide 2021 Wastewater Master Plan (WWMP), which uses unit flow factors, gallons per day per dwelling unit (GPD/DU) adjusted for the proposed high and medium residential densities. This method, as outlined in the WWMP, accounts for distinct water usage patterns associated with various residential densities, providing a more accurate reflection of projected water demands. For each sewer flow factor, a 20% increase has been applied to derive a water use factor for each land use category. For consistency purposes, the sewer flow rate for commercial has also been used from the WWMP with a 20% multiplier to account for water demands. The City's thorough approach ensures that the water use factors as shown in Table 4 below represent actual usage patterns, support sustainable water management, and inform decision-making for land use planning throughout the City.

Land Use Designation	Unit F	low Factor	De	ensity		
High Density Residential	144	GPD/ DU	30	DU/ Acre		
Medium Density Residential	198	GPD/ DU	15	DU/ Acre		
Commercial	3,600	GPD/ Acre				
Source: 2021 Wastewater Master Plan - Table 3.2: Unit Sewage Flow Factors						
Note: The sewer generation values from the 2021 WWMP are increased by 20% to estimate the water generation factors. This adjustment assumes a sewer-to-water return ratio of 0.8.						

Table 4 – City of Redlands	WSMP Water Use Factors
----------------------------	------------------------

See Table 5 below for an estimate of existing water demands from the RHNA Rezone areas.

Existing Land Use Maximum Designation Buildout				ing Water e Factor	Existir Water ((GPD	Jse Wa		ting r Use FY)
High Density Residential	61	DU	144	GPD/ DU	8,784		10	
Medium Density Residential	50	DU	198	GPD/ DU	9,900	GPD	11	AFY
Non-Residential	2,209,041	SF	3,600	GPD/ Acre	182,565		204	
TOTAL 201,249 GPD 225 AFY							AFY	
Source: 2021 Wastewater Master Plan - Table 3.2: Unit Sewage Flow Factors								
* The sewer generation values from the 2021 WWMP are increased by 20% to estimate the water generation factors. This								

Table 5 – Redlands RHNA Rezone Existing Water Demands

* The sewer generation values from the 2021 WWMP are increased by 20% to estimate the water generation factors. This adjustment assumes a sewer-to-water return ratio of 0.8. Some numbers may not sum precisely due to rounding.

As shown in the table above it is estimated that the existing land uses within the RHNA Rezone Areas require approximately 225 AFY or 201,249 GPD of water.

2.3 PROPOSED WATER DEMANDS

See Table 6 below for an estimate of proposed water demands from the RHNA Rezone areas.

Proposed Land Use Designation	Maximum Buildout		Proposed Water Use Factor		Proposed Water Use (GPD)		Wa	osed ater (AFY)
High Density Residential	1,611	DU	144	GPD/ DU	231,984	GPD	260	
Medium Density Residential	825	DU	198	GPD/ DU	163,350	GPD	183	AFY
Public/Institutional (PI)	151,048	SF	3,600	GPD/ Acre	12,483	GPD	14	
TOTAL 407,817 GPD 457 AFY								
Source: 2021 Wastewater Master Plan - Table 3.2: Unit Sewage Flow Factors								
* The sewer generation values from the 2021 WWMP are increased by 20% to estimate the water generation factors. This adjustment assumes a sewer-to-water return ratio of 0.8. Some numbers may not sum precisely due to rounding.								

Table 6 - Redlands RHNA Rezone Proposed Water Demands

As shown in the table above the RHNA Rezone will potentially increase the number of residential units from 111 DUs to 2,436 DUs and will reduce the nonresidential SF from 2,209,041 SF to 151,048 SF. This large change in land use from commercial /industrial to medium and high density residential and public/institutional uses has the potential to generate demands of up to 457 AFY or 407,817 GPD.

The difference between the water demands calculated in Table 5 and Table 6 are representative of the net change in demands for the City's RHNA Rezone areas. See Table 7 below for more details.

Net Change (Proposed - Existing GPU) Water Demands							
Proposed Demand	407,817	GPD	457	AFY			
Existing Demand	201,249	GPD	225	AFY			
Net Change 206,568 GPD 231 AFY							
* Note some numbers may not sum precisely due t	o rounding						

Table 7 – Redlands RHNA Rezone Net Change in Water Demands

As shown above, going from the buildout of the sites pursuant to the current GPU designations to buildout under the proposed project would increase water demand by roughly 206,568 GPD. This translates to an average day demand (ADD) of 143 gallons per minute (GPM) for all rezoned areas combined. The City's water supply is sufficient to meet the projected demand increase (see Section 2.4 for a description of available water resources throughout the City). Table 8 shows the net change for each separate rezone area.

Table 8 – Redlands RHNA Net Change in Water Demand Per Rezone Area

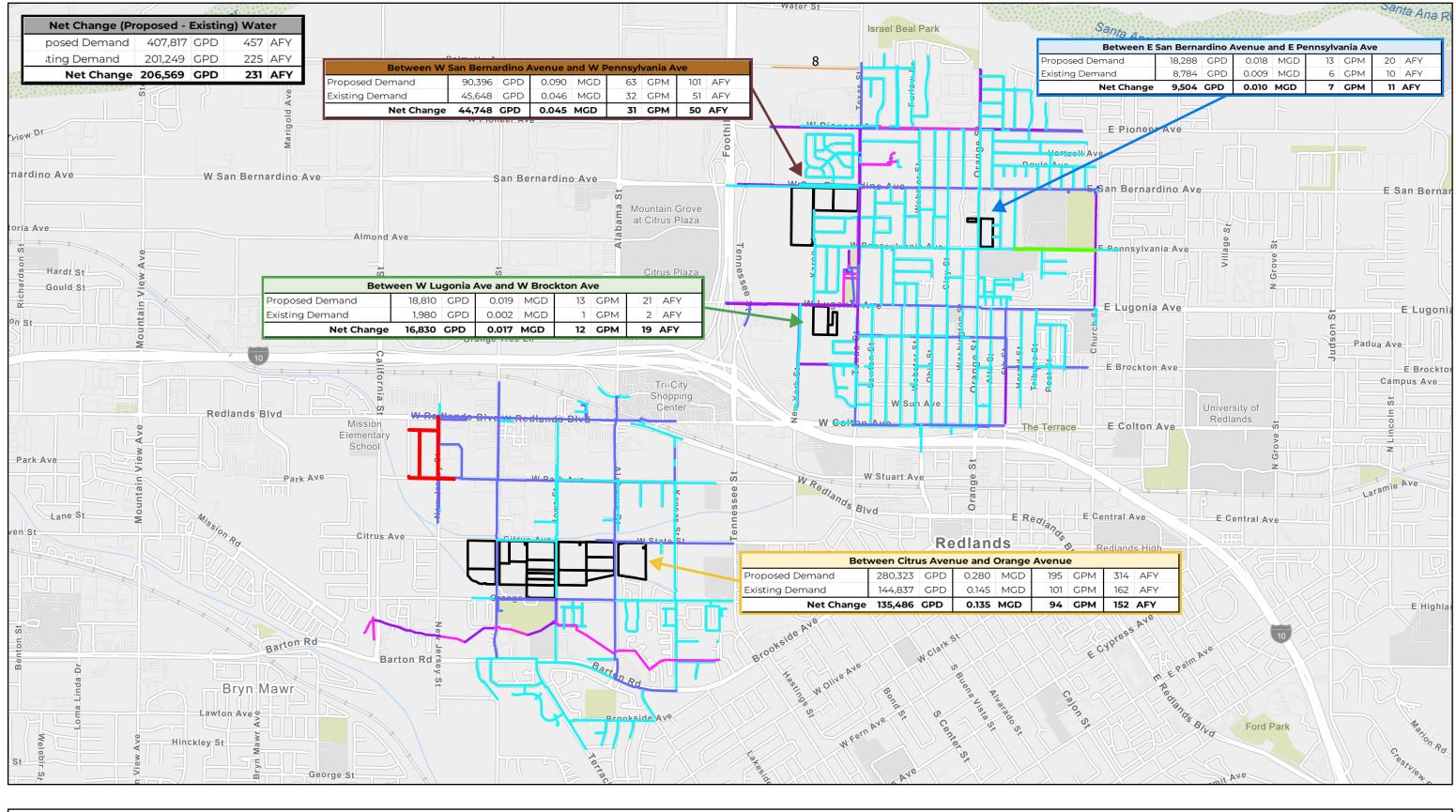
Land Use Designation GPU	Water Use (GPD)		Water Use (ADD)		Water Use (GPM)						
	Between Citrus Avenue and Orange Avenue										
Proposed Demand	280,323	GPD	0.280	MGD	195	GPM					
Existing Demand	144,837	GPD	0.145	MGD	101	GPM					
Net Change	135,486	GPD	0.135	MGD	94	GPM					
Betv	ween W San Be	rnardino Av	enue and W P	ennsylvania A	lve						
Proposed Demand	90,396	GPD	0.090	MGD	63	GPM					
Existing Demand	45,648	GPD	0.046	MGD	32	GPM					
Net Change	44,748	GPD	0.045	MGD	31	GPM					
	Between W	' Lugonia Av	e and W Brock	cton Ave							
Proposed Demand	18,810	GPD	0.019	MGD	13	GPM					
Existing Demand	1,980	GPD	0.002	MGD	1	GPM					
Net Change	16,830	GPD	0.017	MGD	12	GPM					
Bet	ween E San Be	rnardino Av	enue and E Pe	nnsylvania Av	ve						
Proposed Demand	18,288	GPD	0.018	MGD	13	GPM					
Existing Demand	8,784	GPD	0.009	MGD	6	GPM					
Net Change	9,504	GPD	0.010	MGD	7	GPM					
OVERALL NET CHANGE	206,568	GPD	0.207	MGD	143	GPM					

2.4 WATER SYSTEM CAPACITY ASSESSMENT

2022 WATER MASTER PLAN EXISTING CONDITIONS FINDINGS

Provided that the deficiencies identified in the 2022 WSMP are implemented the General Plan Updates are not expected to adversely impact the existing water system.

A review of the City's 2022 Water Systems Master Plan (WSMP) was performed to identify any existing condition deficiencies related to the water system serving the rezone areas. The primary purpose of the WSMP is to present an analysis of the City's existing water systems, and provide recommendations to improve distribution efficiency, reduce non-revenue water, and accommodate growth within the City water service areas.


The WSMP provides specific water infrastructure planning and design criteria used to evaluate existing infrastructure and to develop CIP project recommendations. Scenarios including average day demands (ADD), Maximum Day Demands (MDD) with and without fire flow, and Peak Hour Demands (PHD) are modeled to identify deficiencies within each system. Additionally, the WSMP summarizes additional hydraulic modeling to identify deficiencies as project demands within each system are applied through the planning horizon. The results are used to develop CIP project recommendations for each system.

2.4.1 WATER CAPITAL IMPROVEMENT PLANS

Based on the Summary of Deficiencies (Chapter 7 of the WSMP), twelve (12) potable water system deficiencies were identified City-wide, and CIP projects were recommended. The deficiencies are related to high velocities, low fire flow pressure, and undersized pipelines. Of these twelve CIP projects, two of them are in the vicinity of the rezone areas, as follows:

- CIP-5 Pennsylvania Avenue from Lassen Street to Church Street. This CIP project is located about 350 feet easterly of the northeast rezone area. The project includes upsizing about 1,142 lineal feet (LF) of 6-inch watermain with 8-inch diameter ductile iron pipe (DIP). It is anticipated that this improvement would alleviate the issue of fire flow pressure issues in the existing 6-inch water main.
- CIP-9 Park Avenue from City limits to Essex Court. This CIP project is located about 2,600 feet to the northeasterly of the southwest rezone area. The CIP was identified due to potential fire flow pressure issues. However, the project is not included with the other potential upgrades and is shown as TBD in the 2022 WSMP.

The CIP projects listed above are shown on Figure 5 – RHNA Rezone Proposed Water System Facilities. There are no near-term CIP projects anticipated that would extend recycled water service lines to the rezone areas but changes in demand and other factors could potentially bring recycled water for irrigation purposes in the future. If recycled water becomes available in the future, it could result in a reduction of potable water demand for the rezone areas.

City of Redlands RHNA Rezone Proposed Water System Facilities								
Redlands, CA	Project Parcels Recycle Water Line	Existing Water Mains <pre>< 9" <pre>9" to 12" <pre>12" to 18" <pre>18" to 30"</pre></pre></pre></pre>	Proposed Water Main CIP (2022 Water Systems Master Plan (WSMP)) CIP-5 (1142 LF 8" to replace 6") CIP-9 (Potential Fire Flow Issues/ TBD)					

2.5 PROPOSED LAND USE AND CEQA THRESHOLD ANALYSIS

The following question regarding Utilities and Service Systems are identified in the CEQA Checklist related to water.

Would the Project:

A. Require or result in the relocation or construction of new or expanded water, wastewater treatment or storm water drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects?

Should the answer to this prove to be a potentially significant impact, mitigation measures would be required to reduce those impacts to a less-than-significant threshold. The following impact assessments are based on the significance criteria established earlier in the section.

Impact A: Require or result in the relocation or construction of new or expanded water, wastewater treatment or storm water drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects?

Impact Analysis: In regard to the City's water system the implementation of the proposed Redland RHNA Rezone will have the potential to increase water demands in the range of 206,568 GPD (231 AFY) over the existing conditions. Although the RHNA Rezone will generate an additional water demand the City will maintain a surplus of water supplies of up to 3,817 to 4,869 AF of water over the next 25 years under varying drought conditions. Implementation of projects consistent with the land use will require the construction of new water infrastructure where existing water lines are not sufficient to accommodate the increased supply demands. These determinations will be made on a project-by-project basis including site specific fire flow tests and hydraulic pressure analyses. The proposed improvements may include upsizing water lines on-site and off-site and additions of boosters in low pressure areas.

The water pressures in the rezone areas are within the acceptable range to be able to adequately provide water to these areas. The net increases in the water demand would occur in the southwest rezone area, and the northwest rezone area. The north and northeast rezone areas are not expected to experience increases in water demands. The net increase in water demands for the two identified areas are 94 GPM (ADD) for the southwest area, and 31 GPM (ADD) for the northwest area. These net demand increases are not expected to adversely affect the existing water infrastructure based on the existing water pressures. Therefore, Project impacts associated with the proposed buildout of the rezone areas would be less than significant.

The construction of the on-site and off-site water lines and associated improvements will primarily include trenching for the pipelines. All construction will be performed in accordance with the Construction General Permit and all associated requirements. Any work that may affect services to the existing water lines will be coordinated with the City. When considering impacts resulting from the installation of any required water infrastructure, all impacts are of a relatively short-term duration and would cease to occur once the installation is complete. Therefore, Project impacts on water associated with construction activities would be less than significant.

3. SEWER

3.1 SEWER SYSTEM ENVIRONMENTAL SETTING & INFRASTRUCTURE

The City of Redlands was incorporated in 1888. The current (2022) population is 73,849. Sewer system collection and treatment operation and maintenance is provided by the City's Municipal Utilities and Engineering Department (MUED). The mission of the MUED is to provide reliable service to the community with professionalism, integrity, accountability, quality, transparency, and innovation. MUED plans, designs, constructs, operates, and maintains Redlands' physical infrastructure for the residents and businesses in the City, making its community a desirable place to live, work, and visit.

REGIONAL – CITY OF REDLANDS

The existing sewer collection system comprises about 245 miles of gravity sewer pipelines, with diameters of up to 48-inches. Most of the pipelines (80%) are 8-inches in diameter or smaller. Approximately 82% of the sewer material is vitrified clay pipe (VCP), with approximately 16% polyvinyl chloride (PVC) pipeline. The age of the sewer pipelines ranges from 2 years-old to approximately 120 years old. Approximately 34% of the sewer pipelines are over 50 years old. All wastewater flows generated within the City are conveyed to the City's existing 9.5 MGD Redlands Wastewater Treatment Facility (WWTF) for treatment and disposal. The WWTF operates two parallel treatment systems, a membrane bioreactor treatment process with the capacity to produce up to 6.0 MGD of recycled water, and a conventional process of 3.5 MGD.

The existing sewer collection system includes six (6) inverted siphons. An inverted siphon is a dip or sag in a sewer pipe, used to cross under a structure, channel, or stream. The sewer pipe in the inverted siphon is below the theoretical hydraulic grade line (HGL) of the sewage flow, and thus the siphon is always full of wastewater and under low pressure. In siphon design, it is good practice to have multi-barrel siphon configuration to allow for both redundancy and cleaning during normal operation.

There are two (2) diversion manholes in the City of Redlands, which are larger than 10-inches in diameter. Diversion manholes are unique manholes where wastewater can be conveyed through more than one outlet. Typically stop-logs are used to intentionally block one outlet to "force" the wastewater into an intended downstream path. This is typically done by raising the "overflow" sewer line, to direct the main flows to the main pipeline, while allowing overflows to the secondary sewer after the capacity of the main sewer has been reached or exceeded. Evaluation of system capacity is important to accurately represent flow patterns through diversion manholes.

The existing sewer system in the City of Redlands includes one (1) active City-owned, operated, and maintained sewer lift station located at San Bernardino Avenue and Mountain View Avenue. In the event of a power outage, the San Bernardino/Mountain View Lift Station has a discharge pipe that diverts wastewater to the San Bernardino Wastewater Facility.

LOCAL – THE RHNA REZONE AREA

The RHNA Rezone Areas include portions within the City that are proposing to increase the residential and commercial components to numbers greater than those included in the current General Plan.

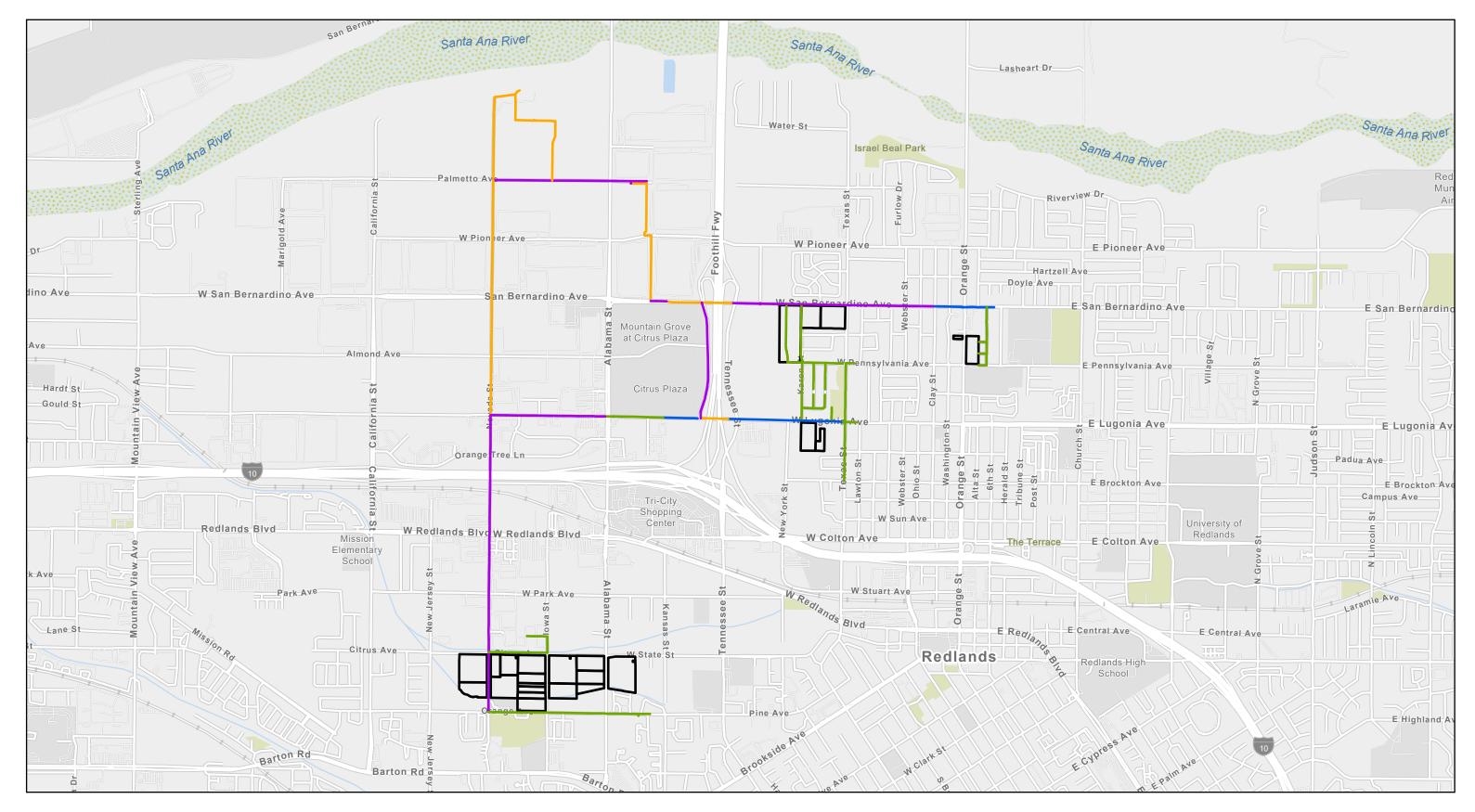
Approximately 41,000 lineal feet of sewer mainline currently accepts wastewater from the RHNA rezone areas, with pipe sizes varying from 8-inches to 30-inches in diameter. The

proposed wastewater discharges associated with the RHNA Rezone development would contribute to the various sewer reaches in Nevada Street, W. Lugonia Avenue, Citrus Plaza Drive, Alabama Street, and Palmetto Avenue. The locations of the RHNA Rezone areas in the vicinity of the City's sewer system reaches are shown on the Existing Sewer Systems Facilities, included as Figure 6.

Two of the City's six inverted siphons are downstream of the RHNA Rezone Area, with both of them in the vicinity of the Southwest Area. The siphons are listed below:

- Nevada Street and Orange Avenue, crossing Morey Arroyo Creek (Triple-Barrel/15-inch, 8-inch, 15-inch)
- Nevada Street and Orange Blossom Trail, crossing flood control channel (Triple-Barrel, 15-inch, 8-inch, 15-inch)

There is an existing diversion manhole located downstream of the central, north, and northeast RHNA Rezone sites. This diversion manhole MH_N37_8 is located on Palmetto Avenue, 1,300 feet east of Nevada Street. The main sewer line is a 48-inch diameter pipeline, with a northerly direction. The overflow pipeline is a 20-inch diameter line, with an invert that is 2.7 feet higher than the main pipeline.

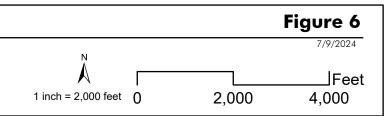

The existing San Bernardino/Mountain View Lift Station is not downstream of the RHNA Rezone Area, and therefore is not impacted by the proposed development.

WASTEWATER TREATMENT PLANT (WWTP)

The City's system ultimately conveys untreated wastewater to the WWTP which has the capacity to treat up to 9.5 MGD. The City's WWTP includes two treatment systems: a membrane bioreactor with a capacity of 6.0 MGD for producing recycled water, and an activated sludge process with a capacity of 3.5 MGD. The plant's total permitted annual average flow is 9.5 MGD and has an average daily flow around 6 MGD.

- <u>The Membrane Bioreactor (MBR) System</u> involves secondary treatment followed by membrane filtration and the recycled water produced by the MBR system is provided to the Mountainview Power Company for cooling towers and to a nearby landfill for dust control. Additionally, other approved downstream users utilize the recycled water for irrigation and agricultural purposes.
- <u>The Conventional Activated Sludge (CAS) System</u> includes preliminary, primary, and secondary treatment steps, but it does not have membrane filtration like the MBR. The secondary treated water from the CAS system typically flows directly to percolation ponds without disinfection.

The City's existing sewer facilities are presented in Figure 6.



City of Redlands RHNA Rezone Existing Sewer System Facilities

Redlands, CA

Gravity Main Project Parcels

- 8 inches or less
- 10 15 inches
- 18 24 inches
 27 48 inches

3.2 EXISTING WASTEWATER GENERATION

REGIONAL – CITY OF REDLANDS

As of the City's 2020 UWMP there were approximately 5.9 MG of wastewater treated daily at the WWTP, which has a capacity to treat up to 9.0 MGD. Up to 7.2 MGD of the wastewater can be treated to Title 22-RecycledWater level. Based on 2020 volumes, approximately 1.6 MGD of treated wastewater was used as recycled water supply for customers, and 3.4 MGD was used for groundwater basin recharge. The remaining water was used within the WWTP or accounted for as losses through the process, meter inaccuracies or evaporation. See Table 9 below to see how much wastewater was collected by the City in 2020.

City of Redlands Wastewater Treatment Facility	Volume Treated	Volume Discharged	Volume Recycled
Discharge Location –Spreading Basin	6,620	3,813	1,806
Source: 2020 City of Redlands IRUWMP (Par Service Area in 2020 (AF)"	t 2, Chapter 4), "Table 4-1	0 Wastewater Treatmen	t and Discharge within

Table 9 – City of Redlands 2020 Wastewater Collection (AFY)

As shown above the City treated 6,620 AFY of which it discharged over 50% into spreading basins and recycled over 25%. The City plans to expand WWTPs recycled water system within pressure zone 1350 and 1570 as the demand for dual metering for irrigation increases.

LOCAL – THE RHNA REZONE AREA

As described previously the City is proposing a GPA and zone change that will allow the City to rezone 23 different sites from commercial/industrial sites to residential and public/ institutional uses. Doing so will allow the City to meet its RHNA requirements, as the rezoned areas will accommodate up to 2,436 residential DUs and 151,048 non-residential SF, in comparison to the existing General Plan land uses. The following tables will present a detailed analysis of the City's sewer flow factors and wastewater generation for various land use designations under the existing GPU and proposed GPA. These factors are necessary to understand how current sewer flows will be altered when projecting future wastewater generation from the RHNA Rezone.

Sewer Flow Factors: The sewer flow factors were obtained from the Citywide Wastewater Master Plan (WWMP), prepared by Dudek in December 2021. To estimate wastewater generation from planned development projects, sewage flow factors were developed for each land use type, based on information from neighboring agencies and industry standards. These sewer flow factors are presented in Table 10.

Land Use Designation	Unit Flow Factor						
High Density Residential	120	GPD/ DU	30	DU/ Acre			
Medium Density Residential	165	GPD/ DU	15	DU/ Acre			
Commercial 3,000 GPD/ Acre - SF/Acre							
Source: 2021 Wastewater Master Plan - Table 3.2: Unit Sewage Flow Factors							

Table 10 – Cit	ty of Redlands	WWMP Sewer	r Flow Factors

Seeing that the existing and proposed land uses under the City's GPU and GPA are either high or medium density residential or commercial/industrial, the sewer flow factors of 120 GPD/DU, 165 GPD/DU, and 3,000 GPD/Acre were used respectively.

The wastewater flows have been estimated for the full build-out of the existing general plan condition in the RHNA Rezone areas and are included in Table 11 below.

				-				
Existing Land Use Designation	Maximum Buildout		Wastewater Generation Factor			ing Was Generat		r
High Density Residential	61	DU	120	GPD/ DU	7,320	GPD	8	AFY
Medium Density Residential	50	DU	165	GPD/ DU	8,250	GPD	9	AFY
Non-Residential	2,209,041	SF	3,000	GPD/ Acre	152,138	GPD	170	AFY
TOTAL 167,708 GPD 188 AFY								
Source: 2021 Wastewater Master Plan - Table 3.2: Unit Sewage Flow Factors * Note some numbers may not sum precisely due to rounding								

Table 11 – Redlands RHNA Rezone Existing Wastewater Generation

Based on the results of the analysis of the existing wastewater generation in the RHNA areas, the total existing wastewater generation is approximately 0.17 million gallons per day (MGD) or approximately 188 AFY. It should also be noted that the estimated wastewater generation value is less than the projected water demand value from the previous section, due to applying a 20-percent increase to the sewer generation factors that were used to estimate water demand. The reason for this is that water usage is typically about 20% higher than sewer usage, due to evaporation and indoor watering of plants. See Appendix B for a breakdown of what flows come from each group of RHNA Rezone areas.

3.3 PROPOSED WASTEWATER GENERATION

The sewer flows associated with the full build-out of the proposed RHNA areas have been determined, based on the sewage generation factors specified in the WWMP and the proposed project development. The net new sewer flows have been calculated and evaluated based on the available capacity in the City's existing sewer system. See Table 12 for the proposed wastewater generation.

Existing Land Use Designation	Maximum Buildout		Wastewater Generation Factor		Existing Wastewater Generation			er
High Density Residential	1,611	DU	120	GPD/ DU	193,080	GPD	216	AFY
Medium Density Residential	825	DU	165	GPD/ DU	136,455	GPD	153	AFY
Non-Residential	151,048	SF	3,000	GPD/ Acre	10,403	GPD	11.7	AFY
TOTAL 339,938 GPD 381 AFY								
Source: 2021 Wastewater Master Plan - Table 3.2: Unit Sewage Flow Factors * Note some numbers may not sum precisely due to rounding								

Table 12 – Redlands RHNA Rezone Proposed Wastewater Generation

The difference between the sewer flows calculated in Table 11 and Table 12 are representative of the net change in wastewater generation for the City's RHNA Rezone areas. See Table 13 below for more details.

Net Change (Proposed - Existing GPU) Wastewater Generation							
Proposed Demand	339,938	GPD	0.34	MGD	381	AFY	
Existing Demand	167,708	GPD	0.17	MGD	188	AFY	
Net Change	172,230	GPD	0.172	MGD	193	AFY	

Table 13 – Redlands RHNA Rezone Net Change in Wastewater Generation

The net new wastewater flows have been determined, based on the difference between the proposed project flows, less the wastewater flows associated with the original existing approved development. The overall net change in the wastewater flows would be approximately 0.172 MGD, which is equivalent to 0.32 cfs. Further, using the peaking factor of 3.2 from the table on page 36 of the City's Sewer System Standard Plans (2024) the net peak flow would be 0.27×3.2 , which is 1.0 cfs. The breakdown of net change in wastewater generation for each area are presented in Appendix B and Figure 7.

3.4 SEWER SYSTEM CAPACITY ASSESSMENT

In order to assure that the sewer system is functioning effectively, the City and its Municipal Utilities and Engineering Department utilizes its Wastewater Master Plan and other resources to monitor, improve, and repair local sewer infrastructure and treatment facilities.

WASTEWATER MASTER PLAN (WWMP)

The purpose of the City's Wastewater Master Plan was to develop an understanding of the sewer system collection needs and includes sewer flow factors to estimate wastewater flows. Additionally, the WWMP identifies sewer reaches recommended for upgrades.

The WWMP discusses that the City's population levels are expected to grow, and includes existing and projected sewer flows, which are presented in Table 14 below.

Year	ADWF (MGD)	PDWF (MGD)	AWWF (MGD)	PWWF (MGD)			
2020	5.8	8.1	6.5	12.0			
2030	6.9	10.4	7.6	12.9			
2045	7.7	10.9	8.4	14.2			
2070	70 8.0 11.6 8.7 15.0						
Notes: ADWF: Average Dry-Weather Flows, PDWF: Peak Dry-Weather Flows, AWWF: Average Wet-Weather Flows, PWWF: Peak Wet-Weather Flows							

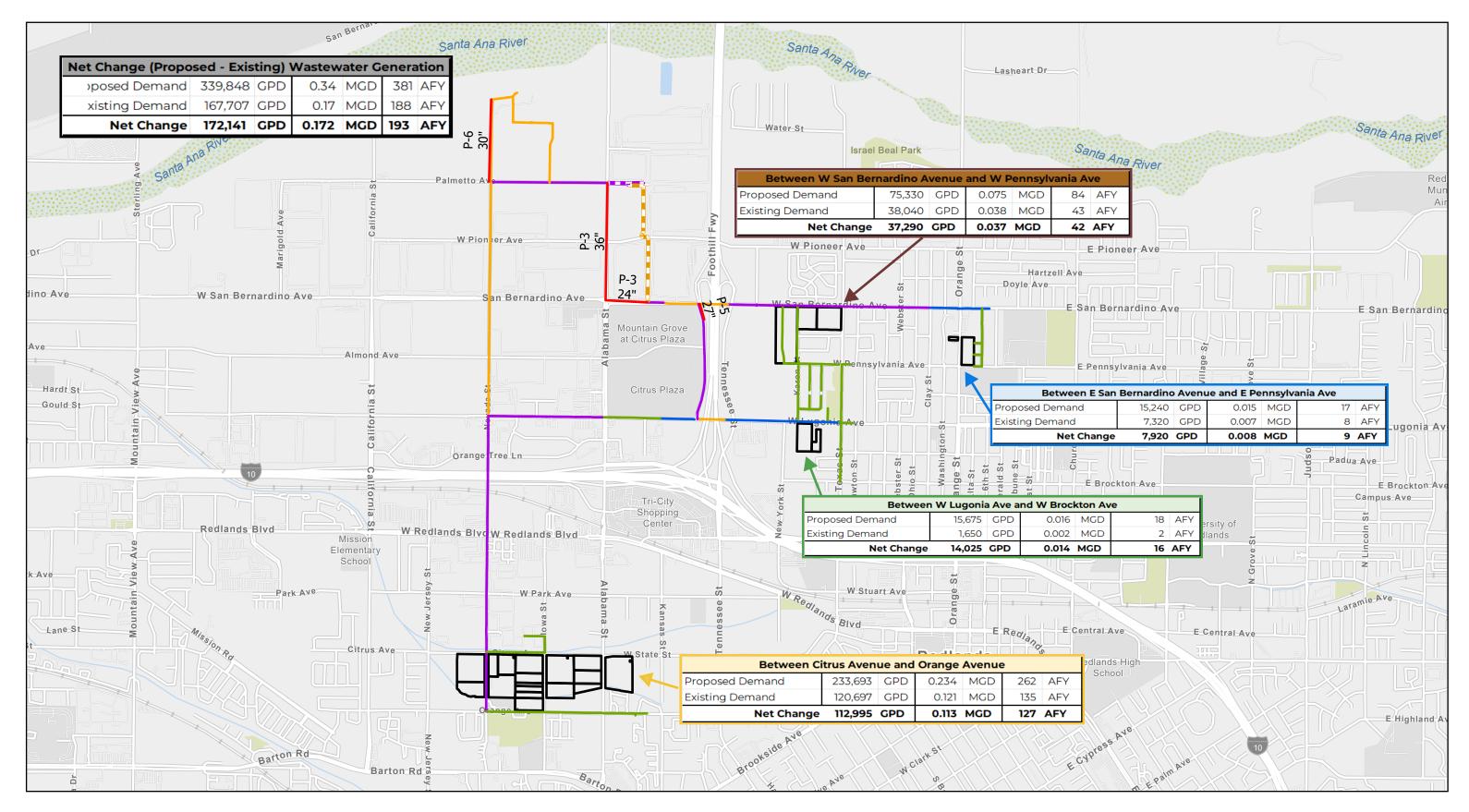
Table 14 – City of Redlands Existing and Projected Sewer Flows

The figures and tables in the WWMP indicate that most of the sewer systems receiving wastewater flows from the proposed RHNA areas are operating at or below 50% of their maximum depth/Diameter (d/D). Thus the sewer system has the capacity to accommodate potential changes to the City's buildout, including those related to the RHNA land use updates.

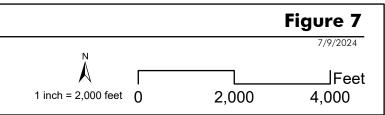
Based on the sewer systems standards (2024), sewer pipes larger than 12-inches in diameter are designed to flow up to 75%-full. Therefore, since most of the existing sewer systems are flowing at or less than 50%-full, there is additional capacity to handle an increase in wastewater.

The flow-depths of the existing sewer systems (21-inches to 30-inches) have been evaluated to confirm the amount of additional wastewater capacity available. The results are included in Table 15.

Existing Sewer Reach	Additional Peak Capacity
21-Inch VCP (Nevada Street, San Bernardino Avenue)	2.29 CFS
24-inch VCP (Nevada Street)	2.99 CFS
30-inch VCP (Nevada Street)	4.55 CFS
Net Peak Flows	1.0 CFS (0.54MGD)


The results of the sewer capacity analyses show that the net peak flows of 1.0 cfs would have a negligible effect on the existing sewer system. The sewer flow-depth calculations are included in Appendix C.

All sewage generated within the City of Redlands is ultimately conveyed via the City's sewer pipelines to the City's WWTP. The City's WWMP includes a process evaluation of the facility. The analysis in the WWMP concluded that the existing treatment system is sufficient to meet the projected demands in the near-term, long-term, and ultimate build-out. Therefore, based on the nominal net increase in average sewer flow of 0.172 MGD , and peak sewer flow of 0.54 MGD, it is our opinion the proposed RHNA project would not adversely impact the City's WWTP.


PREVENTATIVE MAINTENANCE PRORGRAM

The City works proactively to maintain and ensure the optimal operations of its sewer system through the preventative maintenance program in place. Specifically, the City is committed to cleaning and closed caption television (CCTV) inspecting 50 miles or twenty-percent of the City's sewer system annually and doing and entire system check every five years. Based on the maintenance data from the City the WWMP indicated that the City is meeting or exceeding its stated preventative maintenance goals. The only recommended improvements are for the City to conduct a cleaning of the entire system every two years.

See Figure 7 below for a visual of the City's proposed and recommended sewer system upgrades alongside the proposed flows generated from each RHNA Rezone area.

City of Redlands RHNA Rezone Proposed Sewer System Facilities

3.4.1 SEWER CAPITAL IMPROVEMENT PLANS

The WWMP evaluates the operation and capacity of the existing wastewater collection system, and wastewater treatment plant within the City of Redlands, providing recommendations for future system improvements. The 2021 WWMP is the first wastewater master plan in over two decades, identifies sewer reaches downstream of the proposed project for recommended upgrades as shown in Table 16 and Figure 7. While these upgrades should occur as identified in the most recent 2021 WWMP, the RHNA rezone projects are not the impetus for the recommended upgrades.

Project Name	CIP Phase / Fiscal Year	Project Summary
P-3 – Alabama Street Pipeline Upsizing and Realignment	On-going FY 2020	Install concrete plug to abandon 3,100 LF of existing 24-inch and 30-inch; build 920 LF of new 24-inch in San Bernardino Avenue; build 2,700 LF of 36-inch in Alabama Street
P-5 – Citrus Plaza Drive Pipeline Upsizing	Near-Term FY 2030	Upsize 350 LF of 24-inch to 27-inch
P-6 – Nevada Street Pipeline Upsizing (North of Palmetta Avenue)	On-going FY 2020	Upsize 1,900 LF of 27-inch to 30-inch

Based on our review of the WWMP and of the net new wastewater flows associated with the revised RHNA areas, it is our opinion that the revised land use will not adversely impact the existing City of Redlands sewer system.

3.5 PROPOSED CONDITION AND CEQA THRESHOLD ANALYSIS

The following questions regarding Utilities and Service Systems are identified in the CEQA Checklist related to sewer.

Would the Project:

- A. Require or result in the relocation or construction of new or enhanced water, wastewater treatment or storm water drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects?
- B. Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?

Should the answers to these environmental factors prove to be a potentially significant impact, mitigation measures would be required to reduce those impacts to a less-than-significant threshold.

Impact A: Require or result in the relocation or construction of new or expanded water, wastewater treatment or storm water drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects?

Impact Analysis: As compared to the buildout of the existing general plan land uses, the proposed development of the RHNA project areas would result in minor increases

in the wastewater amount to the City's existing sewer systems. Based on our evaluation of the existing sewer system and available capacities, these increases would not trigger the need for relocations or construction of new or expanded sewer pipelines or treatment systems. Therefore, no adverse impacts resulting from the proposed project development are anticipated.

The construction of any on-site and off-site sewer lines and associated improvements would primarily include trenching for the pipelines. All construction would be performed in accordance with the Construction General Permit and all associated requirements. Any work that may affect services to the existing sewer lines will be coordinated with the City. When considering impacts resulting from the installation of any required sewer infrastructure, all impacts would be of a relatively short-term duration and would cease to occur once the installation is complete. Therefore, Project impacts on sewer infrastructure associated with construction activities would be less than significant.

Impact B: Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?

Impact Analysis: The proposed estimated increase in the average wastewater amount, as compared to buildout pursuant to the existing general plan land use designations, would be 0.172 MGD, which amounts to less than 3% of the total wastewater amount of 5.8 MGD (2020). The capacity of the Redlands Waste Water Treatment Facility is 9.5 MGD currently, which is sufficient to handle the wastewater flows generated within the City. Therefore, the proposed project would be less than significant, and no adverse impacts from the proposed RHNA project development are anticipated.

4. APPENDICES

Appendix A Water Demand CalculationsAppendix B Wastewater Generation CalculationsAppendix C Sewer Capacity Calculation

APPENDIX A

WATER DEMAND CALCULATIONS

Fuscoe Engineering, Inc.

NET CHANGE - Water Demand - Existing to Proposed												
Land Use Designation	Water Use (GPD)	Water Use (MGD)	Water Use (GPM)	Water Use (AFY)								
Between Citrus Avenue and Orange Avenue												
Proposed Demand	280,323 GPD	0.280 MGD	195 GPM	314 AFY								
Existing Demand	144,837 GPD	0.145 MGD	101 GPM	162 AFY								
Net Change	135,486 GPD	0.135 MGD	94 GPM	152 AFY								
Between W	/ San Bernardino /	Avenue and W Pe	ennsylvania Ave	÷								
Proposed Demand	90,396 GPD	0.090 MGD	63 GPM	101 AFY								
Existing Demand	45,648 GPD	0.046 MGD	32 GPM	51 AFY								
Net Change	44,748 GPD	0.045 MGD	31 GPM	50 AFY								
Bet	ween W Lugonia	Ave and W Brock	ton Ave									
Proposed Demand	18,810 GPD	0.019 MGD	13 GPM	21 AFY								
Existing Demand	1,980 GPD	0.002 MGD	1 GPM	2 AFY								
Net Change	16,830 GPD	0.017 MGD	12 GPM	19 AFY								
Between I	San Bernardino /	Avenue and E Pe	nnsylvania Ave									
Proposed Demand	18,288 GPD	0.018 MGD	13 GPM	20 AFY								
Existing Demand	8,784 GPD	0.009 MGD	6 GPM	10 AFY								
Net Change	9,504 GPD	0.010 MGD	7 GPM	11 AFY								
OVERALL NET CHANGE	206,569 GPD	0.207 MGD	143.5 GPM	231 AFY								

WATER USE FACTORS									
Land Use Designation	Unit Flow Factor								
High Density Residential	144	GPD/ DU	30	DU/ Acre					
Medium Density Residential	198	GPD/ DU	15	DU/ Acre					
Commercial	3,600	GPD/ SF							
Source: 2021 Wastewater Master Plan - Note: The sewer generation values are factors. This adjustment assumes a sev	increasea	by 20% to estir	nate the v						

Redlands Rezone

	EXISTING WATER DEMANDS										
Site Number	Existing Land Use Designation	Existing Zoning	Acres	Existing Maximum Buildout		se Factor	Existing Water Use (GPD)	Existing Water Use (MGD)	Existing Water Use (AFY)		
		-	Between	Citrus Avenue	and Orang	je Avenue	1				
1	Commercial/Industrial	EV/IC	8.91	194,060 SF	3,600	GPD/ SF	16,038 GPD	0.016 MGD	18 AFY		
2	Commercial/Industrial	EV/IC	4.26	92,783 SF	3,600	GPD/ SF	7,668 GPD	0.008 MGD	9 AFY		
3	Commercial/Industrial	EV/IC	5.84	127,195 SF	3,600	GPD/ SF	10,512 GPD	0.011 MGD	12 AFY		
4	Commercial/Industrial	EV/IC	3.15	68,607 SF	3,600	GPD/ SF	5,670 GPD	0.006 MGD	6 AFY		
5	Commercial/Industrial	EV/IC	1.07	23,305 SF	3,600	GPD/ SF	1,926 GPD	0.002 MGD	2 AFY		
6	Commercial/Industrial	EV/IC	1.9	41,382 SF	3,600	GPD/ SF	3,420 GPD	0.003 MGD	4 AFY		
7 8	Commercial/Industrial MDR	EV/IC EV3000RM	1.9 4.07	41,382 SF 40 DU	3,600 198	GPD/ SF GPD/ DU	3,420 GPD 7,920 GPD	0.003 MGD 0.008 MGD	4 AFY 9 AFY		
9	Commercial/Industrial	EV/IC	2.5	54,450 SF	3,600	GPD/ SF	4,500 GPD	0.004 MGD	5 AFY		
10	Commercial/Industrial	EV/IC	4.03	87,773 SF	3,600	GPD/ SF	7,254 GPD	0.007 MGD	8 AFY		
10A	Commercial/Industrial	EV/IC	0.08	1,742 SF	3,600	GPD/ SF	144 GPD	0.000 MGD	0.16 AFY		
11	Commercial/Industrial	EV/IC	4.7	102,366 SF	3,600	GPD/ SF	8,460 GPD	0.008 MGD	9 AFY		
12	Commercial/Industrial	EV/IC	2.31	50,312 SF	3,600	GPD/ SF	4,158 GPD	0.004 MGD	5 AFY		
13	Commercial/Industrial	EV/IC	4.73	103,019 SF	3,600	GPD/ SF	8,514 GPD	0.009 MGD	10 AFY		
14	Commercial/Industrial	EV/IC	4.21	91,694 SF	3,600	GPD/ SF	7,578 GPD	0.008 MGD	8 AFY		
15	Commercial/Industrial	EV/IC	8.86	192,971 SF	3,600	GPD/ SF	15,948 GPD	0.016 MGD	18 AFY		
15A	Commercial/Industrial	EV/IC	0.02	436 SF	3,600	GPD/ SF	36 GPD	0.000 MGD	0.04 AFY		
16	Commercial/Industrial	EV/IC	10.65	231,957 SF	3,600	GPD/ SF	19,170 GPD	0.019 MGD	21 AFY		
16A	Commercial/Industrial	EV/IC	0.01	218 SF	3,600	GPD/ SF	18 GPD	0.000 MGD	0.02 AFY		
24	Commercial/Industrial	EV/IC	6.94	151,048 SF	3,600	GPD/ SF 12,483 GPI		0.012 MGD	14 AFY		
	TOTAL	Detruces	80.14	acres Bernardino Ave	nuc and M	Depresidue	144,837 GPD	0.145 MGD	162 AFY		
	Commercial/Admin				nue and w	Pennsylva	1	1			
17	Professional	CP-4	14.05	306,009 SF	3,600	GPD/ SF	25,290 GPD	0.03 MGD	28 AFY		
18	Commercial/Admin Professional	CP-4	5	108,900 SF	3,600	GPD/ SF	9,000 GPD	0.01 MGD	10 AFY		
19	Commercial/Admin Professional	CP-4	6.31	137,432 SF	3,600	GPD/ SF	11,358 GPD	0.01 MGD	13 AFY		
	TOTAL		25.36	acres	and M/ D		45,648 GPD	0.05 MGD	51 AFY		
20	MDR	A-1	4.76	W Lugonia Ave	and W Bro	GPD/ DU	198 GPD	0.00 MGD	0 AFY		
21	MDR	R-1	1.64	9 DU	198	GPD/ DU	1,782 GPD	0.00 MGD	2 AFY		
	TOTAL			acres			1,980 GPD	0.00 MGD	2 AFY		
				Bernardino Ave		•			1		
22 23	HDR	R-2 R-2	0.33	4 DU 57 DU	144 144	GPD/DU	576 GPD	0.00 MGD	1 AFY		
25	HDR TOTAL	R-2	3.96		144	GPD/ DU	8,208 GPD	0.01 MGD 0.01 MGD	9 AFY		
	OVERALL TOTAL			acres			8,784 GPD 201,249 GPD	0.20 MGD	10 AFY 225 AFY		
	OVERALL TOTAL		116	acres			201,249 GPD	0.20 MGD	225 AFY		

	PROPOSED WATER DEMANDS											
Site Number	Proposed Land Use Designation	Proposed Zoning	Proposed Density (DU/acre)	Acres	Proposed Maximum Buildout		Use Factor	Existing Wate Use (GPD)	Existing ^r Water Use (MGD)	Existing Water Use (AFY)		
		1	Between Citru	s Avenu	e and Orange	e Avenu		1		1		
1	MDR	R-2	15	8.91	133 DU	198	GPD/ DU	26,334 GPE	0.03 MGD	29 AFY		
2	MDR	R-2	15	4.26	63 DU	198	GPD/ DU	12,474 GPE	0.01 MGD	14 AFY		
3	HDR	R-3	30	5.84	175 DU	144	GPD/ DU	25,200 GPE	0.03 MGD	28 AFY		
4	HDR	R-3	30	3.15	94 DU	144	GPD/ DU	13,536 GPE	0.01 MGD	15 AFY		
5	HDR	R-3	30	1.07	32 DU	144	GPD/ DU	4,608 GPE	0.00 MGD	5 AFY		
6	HDR	R-3	30	1.9	57 DU	144	GPD/ DU	8,208 GPE	0.01 MGD	9 AFY		
7	HDR	R-3	30	1.9	57 DU	144	GPD/ DU	8,208 GPE	0.01 MGD	9 AFY		
8	MDR	EV2500RM	15	4.07	61 DU	198	GPD/ DU	12,078 GPE	0.01 MGD	14 AFY		
9	HDR	R-3	30	2.5	75 DU	144	GPD/ DU	10,800 GPE	0.01 MGD	12 AFY		
10	HDR	R-3	30	4.03	120 DU	144	GPD/ DU	17,280 GPE	0.02 MGD	19 AFY		
10A	MDR	R-3	30	0.08	2 DU	144	GPD/ DU	288 GPE	0.00 MGD	0 AFY		
11	MDR	R-2	15	4.7	70 DU	198	GPD/ DU	13,860 GPE	0.01 MGD	16 AFY		
12	MDR	R-2	15	2.31	34 DU	198	GPD/ DU	6,732 GPE	0.01 MGD	8 AFY		
13	HDR	R-3	30	4.73	141 DU	144	GPD/ DU	20,304 GPE	0.02 MGD	23 AFY		
14	HDR	R-3	30	4.21	126 DU	144	GPD/ DU	18,144 GPE	0.02 MGD	20 AFY		
15	HDR	R-3	30	8.86	265 DU	144	GPD/ DU	38,160 GPE	0.04 MGD	43 AFY		
15A	HDR	R-3	30	0.02	1 DU	144	GPD/ DU	144 GPE	0.00 MGD	0 AFY		
16	MDR	R-2	15	10.7	159 DU	198	GPD/ DU	31,482 GPE	0.03 MGD	35 AFY		
16A	MDR	R-2	15	0.01	- DU	198	GPD/ DU	- GPE	- MGD	- AFY		
24	Public/ Institutional (PI)	EV/IP	0.5 Floor Area Ratio (FAR)	6.94	151,048 SF	3,600	GPD/ SF	12,483 GPE	0.01 MGD	14 AFY		
	TOTAL			80.1	acres			280,323 GPE	0.2803 MGD	314 AFY		
	1	<u> </u>	Between W San Bernar	dino Av	enue and W	Pennsyl	vania Ave	1	T	<u> </u>		
17	MDR	R-2	15	14.1	210 DU	198	GPD/ DU	41,580 GPE	0.04 MGD	47 AFY		
18	HDR	R-3	30	5	150 DU	144	GPD/ DU	21,600 GPE	0.02 MGD	24 AFY		
19	HDR	R-3	30	6.31	189 DU	144	GPD/ DU	27,216 GPE	0.03 MGD	30 AFY		
	TOTAL			25.4	acres			90,396 GPE	0.09 MGD	101 AFY		
20	MDR	R-2	Between W Lug	ionia Av 4.76	/e and W Bro 71 DU	ckton Av 198	GPD/ DU	14,058 GPE	0.01 MGD	16 AFY		
20	MDR	R-2 R-2	15	1.64	24 DU	198	GPD/ DU GPD/ DU	4,752 GPL		5 AFY		
	TOTAL				acres			18,810 GPE		21 AFY		
			Between E San Bernar				ania Ave					
22	HDR	R-3	30	0.33	9 DU	144	GPD/ DU	1,296 GPE		1 AFY		
23	HDR	R-3	30	3.96	118 DU	144	GPD/ DU	16,992 GPE		19 AFY		
	TOTAL OVERALL TOTAL				acres			18,288 GPE 407,817 GPE		20 AFY 457 AFY		
	OVERALL TOTAL			116	acres			407,817 GPL	0.41 MGD	457 AFY		

APPENDIX B

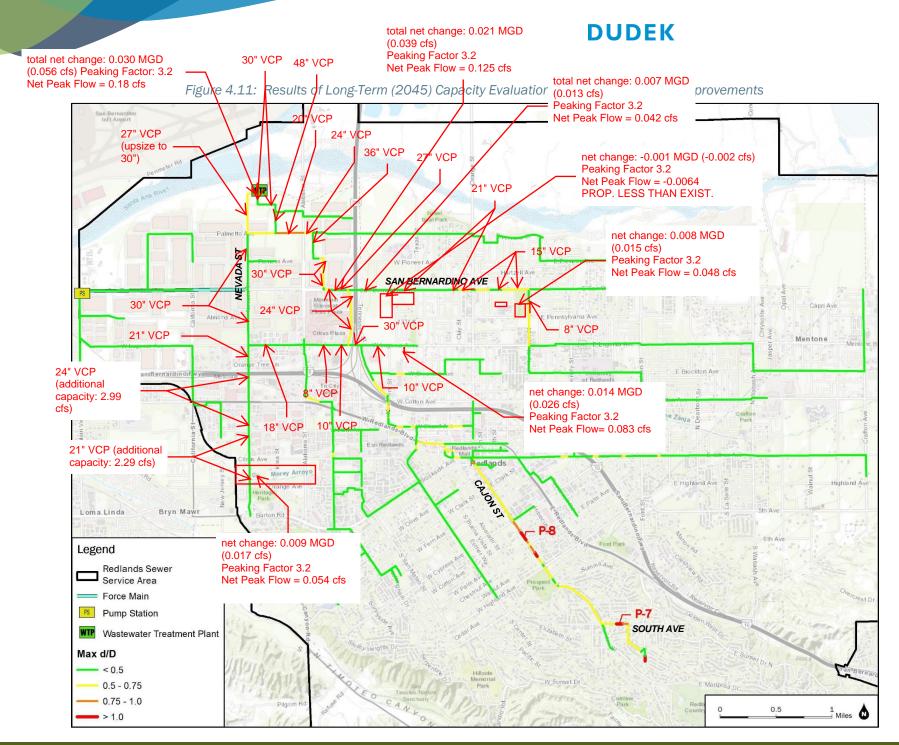
WASTEWATER GENERATION CALCULATIONS

Fuscoe Engineering, Inc.

NET CHANGE - Wastewater Generation - Existing to Proposed									
Land Use Designation	Wastewater Generation (GPD)	Wastewater Generation (MGD)	Wastewater Generation (AFY)						
Between C									
Proposed Demand	233,693 GPD	0.234 MGD	262 AFY						
Existing Demand	120,697 GPD	0.121 MGD	135 AFY						
Net Change	112,995 GPD	0.113 MGD	127 AFY						
Between W San Be	rnardino Avenue a	and W Pennsylva	ania Ave						
Proposed Demand	75,330 GPD	0.075 MGD	84 AFY						
Existing Demand	38,040 GPD	0.038 MGD	43 AFY						
Net Change	37,290 GPD	0.037 MGD	42 AFY						
Between W	Lugonia Ave and	W Brockton Ave							
Proposed Demand	15,675 GPD	0.016 MGD	18 AFY						
Existing Demand	1,650 GPD	0.002 MGD	2 AFY						
Net Change	14,025 GPD	0.014 MGD	16 AFY						
Between E San Be	rnardino Avenue a	and E Pennsylva	nia Ave						
Proposed Demand	15,240 GPD	0.015 MGD	17 AFY						
Existing Demand	7,320 GPD	0.007 MGD	8 AFY						
Net Change	7,920 GPD	0.008 MGD	9 AFY						
OVERALL NET CHANGE	172,231 GPD	0.172 MGD	193 AFY						

Land Use Designation	Unit Flow Factor						
High Density Residential	120	GPD/ DU	30	DU/ Acre			
Medium Density Residential	165	GPD/ DU	15	DU/ Acre			
Single Family Residential	210	GPD/ DU	3	DU/ Acre			
Hotel	110	GPD/ DU	-	GPD/ Acre			
Institutional	1,000	GPD/ Acre	-	SF/Acre			
Commercial	3,000	GPD/ Acre	-	SF/Acre			
Industrial	3,200	GPD/ Acre	-	SF/Acre			

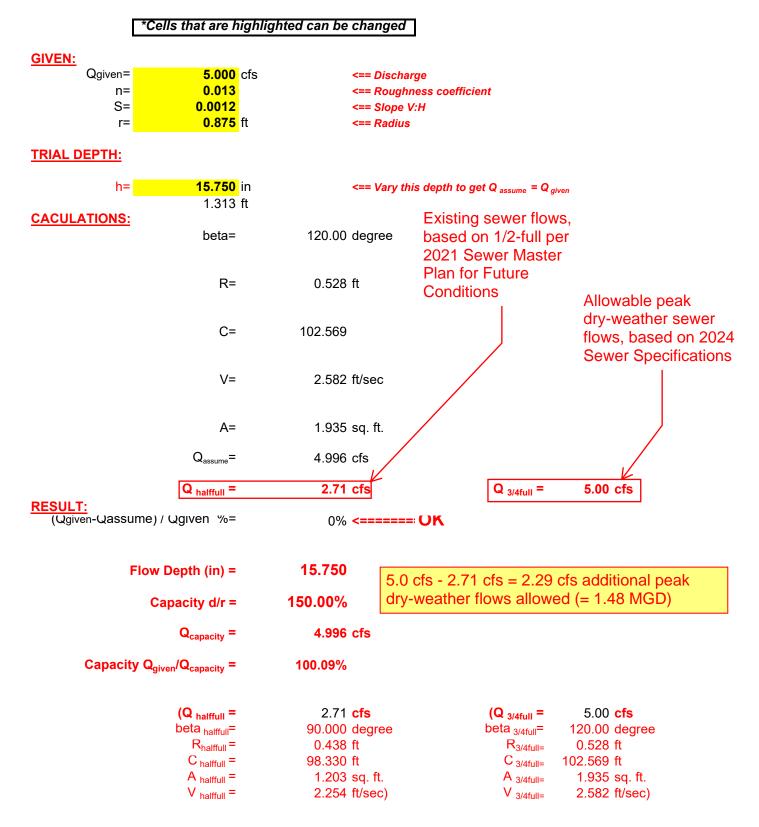
Redlands Rezone



			EXIST	ING WASTEWA	ATER GENERATION								PROPOSED	WA <u>ST</u> E	WATER GENE				
Site Number	Existing Land Use Designation	Existing Zoning	Acres	Existing Maximum Buildout	Wastewater Generation Factor	Wastewater Generation (GPD)	Wastewater Generation (MGD)	Wastewater Generation (AFY)	Si Nur		Proposed Land Use Designation	Proposed Zoning	Proposed Density (DU/acre)	Acres	Proposed Maximum Buildout	Proposed Sewer Generation Factor	Wastewater Generation (GPD)	Wastewater Generation (MGD)	Wastewater Generation (AFY)
			Between		and Orange Avenue	(0. 2)	((~~ 1)					Between Citru	is Aven		e Avenue	(0. 2)	(1105)	(····/
1	Commercial/Industrial	EV/IC	8.91	194,060 SF	3,000 GPD/ Acre	13,365 GPD	0.013 MGD	15 AFY		1	MDR	R-2	15	8.91	133 DU	165 GPD/ DU	21,945 GPD	0.02 MGD	25 AFY
2	Commercial/Industrial	EV/IC	4.26	92,783 SF	3,000 GPD/Acre	6,390 GPD	0.006 MGD	7 AFY		2	MDR	R-2	15	4.26	63 DU	165 GPD/ DU	10,395 GPD	0.01 MGD	12 AFY
3	Commercial/Industrial	EV/IC	5.84	127,195 SF	3,000 GPD/ Acre	8,760 GPD	0.009 MGD	10 AFY		5	HDR	R-3	30	5.84	175 DU	120 GPD/ DU	21,000 GPD	0.02 MGD	24 AFY
4	Commercial/Industrial	EV/IC	3.15	68,607 SF	3,000 GPD/ Acre	4,725 GPD	0.005 MGD	5 AFY		÷	HDR	R-3	30	3.15	94 DU	120 GPD/ DU	11,280 GPD	0.01 MGD	13 AFY
5	Commercial/Industrial	EV/IC	1.07	23,305 SF	3,000 GPD/ Acre	1,605 GPD	0.002 MGD	2 AFY		5	HDR	R-3	30	1.07	32 DU	120 GPD/ DU	3,840 GPD	0.00 MGD	4 AFY
6	Commercial/Industrial	EV/IC	1.9	41,382 SF	3,000 GPD/ Acre	2,850 GPD	0.003 MGD	3 AFY		5	HDR	R-3	30	1.9	57 DU	120 GPD/ DU	6,840 GPD	0.01 MGD	8 AFY
7	Commercial/Industrial	EV/IC	1.9	41,382 SF	3,000 GPD/ Acre	2,850 GPD	0.003 MGD	3 AFY		,	HDR	R-3	30	1.9	57 DU	120 GPD/ DU	6,840 GPD	0.01 MGD	8 AFY
8	MDR	EV3000RM	4.07	40 DU	165 GPD/ DU	6,600 GPD	0.007 MGD	7 AFY	8	3	MDR	EV2500RM	15	4.07	61 DU	165 GPD/ DU	10,065 GPD	0.01 MGD	11 AFY
9	Commercial/Industrial	EV/IC	2.5	54,450 SF	3,000 GPD/Acre	3,750 GPD	0.004 MGD	4 AFY	9	•	HDR	R-3	30	2.5	75 DU	120 GPD/ DU	9,000 GPD	0.01 MGD	10 AFY
10	Commercial/Industrial	EV/IC	4.03	87,773 SF	3,000 GPD/ Acre	6,045 GPD	0.006 MGD	7 AFY	١	С	HDR	R-3	30	4.03	120 DU	120 GPD/ DU	14,400 GPD	0.01 MGD	16 AFY
10A	Commercial/Industrial	EV/IC	0.08	1,742 SF	3,000 GPD/ Acre	120 GPD	0.000 MGD	0.13 AFY	10	A	MDR	R-3	30	0.08	2 DU	165 GPD/ DU	330 GPD	0.00 MGD	0 AFY
11	Commercial/Industrial	EV/IC	4.7	102,366 SF	3,000 GPD/Acre	7,050 GPD	0.007 MGD	8 AFY	1	1	MDR	R-2	15	4.7	70 DU	165 GPD/ DU	11,550 GPD	0.01 MGD	13 AFY
12	Commercial/Industrial	EV/IC	2.31	50,312 SF	3,000 GPD/ Acre	3,465 GPD	0.003 MGD	4 AFY	١	2	MDR	R-2	15	2.31	34 DU	165 GPD/ DU	5,610 GPD	0.01 MGD	6 AFY
13	Commercial/Industrial	EV/IC	4.73	103,019 SF	3,000 GPD/Acre	7,095 GPD	0.007 MGD	8 AFY	١	3	HDR	R-3	30	4.73	141 DU	120 GPD/ DU	16,920 GPD	0.02 MGD	19 AFY
14	Commercial/Industrial	EV/IC	4.21	91,694 SF	3,000 GPD/ Acre	6,315 GPD	0.006 MGD	7 AFY	1	4	HDR	R-3	30	4.21	126 DU	120 GPD/ DU	15,120 GPD	0.02 MGD	17 AFY
15	Commercial/Industrial	EV/IC	8.86	192,971 SF	3,000 GPD/ Acre	13,290 GPD	0.013 MGD	15 AFY	I	5	HDR	R-3	30	8.86	265 DU	120 GPD/ DU	31,800 GPD	0.03 MGD	36 AFY
15A	Commercial/Industrial	EV/IC	0.02	436 SF	3,000 GPD/ Acre	30 GPD	0.000 MGD	0.03 AFY	15	A	HDR	R-3	30	0.02	1 DU	120 GPD/ DU	120 GPD	0.00 MGD	0 AFY
16	Commercial/Industrial	EV/IC	10.65	231,957 SF	3,000 GPD/ Acre	15,975 GPD	0.016 MGD	18 AFY	1	6	MDR	R-2	15	10.7	159 DU	165 GPD/ DU	26,235 GPD	0.03 MGD	29 AFY
16A	Commercial/Industrial	EV/IC	0.01	218 SF	3,000 GPD/ Acre	15 GPD	0.000 MGD	0.02 AFY	16	A	MDR	R-2	15	0.01	- DU	165 GPD/ DU	- GPD	- MGD	- AFY
24	Commercial/Industrial	EV/IC	6.94	151,048 SF	3,000 GPD/ Acre	10,403 GPD	0.010 MGD	12 AFY	2	4	Public/ Institutional (PI)	EV/IP	0.5 Floor Area Ratio (FAR)	6.94	151,048 SF	3,000 GPD/ Acre	10,403 GPD	0.01 MGD	
	TOTAL	Betwee	80.14 n W San F	acres Bernardino Ave	enue and W Pennsylvar	120,697 GPD	0.121 MGD	135 AFY			TOTAL		Between W San Berna	80.1 rdino A		Pennsylvania Ave	233,693 GPD	0.23 MGD	262 AFY
17	Commercial/Admin Professional	CP-4	14.05	306,009 SF	3,000 GPD/ Acre	21,075 GPD	0.02 MGD	24 AFY	1	7	MDR	R-2	15	14.1	210 DU	165 GPD/ DU	34,650 GPD	0.03 MGD	39 AFY
18	Commercial/Admin Professional	CP-4	5	108,900 SF	3,000 GPD/ Acre	7,500 GPD	0.01 MGD	8 AFY	۱	з	HDR	R-3	30	5	150 DU	120 GPD/ DU	18,000 GPD	0.02 MGD	20 AFY
19	Commercial/Admin Professional	CP-4	6.31	137,432 SF	3,000 GPD/ Acre	9,465 GPD	0.01 MGD	11 AFY	1	Э	HDR	R-3	30	6.31	189 DU	120 GPD/ DU	22,680 GPD	0.02 MGD	25 AFY
	TOTAL		25.36	acres		38,040 GPD	0.04 MGD	43 AFY			TOTAL		Determine William	25.4	acres		75,330 GPD	0.08 MGD	84 AFY
20	MDR	A-1	4.76	1 DU	and W Brockton Ave 165 GPD/ DU	165 GPD	0.000 MGD	0.185 AFY	2	0	MDR	R-2	Between W Lug 15	4.76	71 DU	165 GPD/ DU	11,715 GPD	0.01 MGD	13 AFY
21	MDR	R-1	1.64	9 DU	165 GPD/ DU	1,485 GPD	0.001 MGD	1.663 AFY	2	1	MDR	R-2	15	1.64	24 DU	165 GPD/ DU	3,960 GPD	0.00 MGD	4 AFY
	TOTAL			acres Bernardino Ave	enue and E Pennsylvani	1,650 GPD	0.002 MGD	2 AFY			TOTAL	•	Between E San Berna		4 acres	Pennsylvania Ave	15,675 GPD	0.02 MGD	18 AFY
22	HDR	R-2	0.33	4 DU	120 GPD/ DU	480 GPD	0.00048 MGD	0.538 AFY	2	2	HDR	R-3	27	0.33	9 DU	120 GPD/ DU	1,080 GPD	0.001 MGD	1 AFY
23	HDR	R-2	3.96	57 DU	120 GPD/ DU	6,840 GPD	0.0068 MGD	7.662 AFY	2		HDR	R-3	27	3.96	118 DU	120 GPD/ DU	14,160 GPD	0.01 MGD	16 AFY
	TOTAL			acres		7,320 GPD	0.00732 MGD				TOTAL				9 acres		15,240 GPD	0.02 MGD	
	OVERALL TOTAL		116	acres		167,707 GPD	0.17 MGD	188 AFY			OVERALL TOTAL			116	acres		339,938 GPD	0.34 MGD	381 AF

APPENDIX C

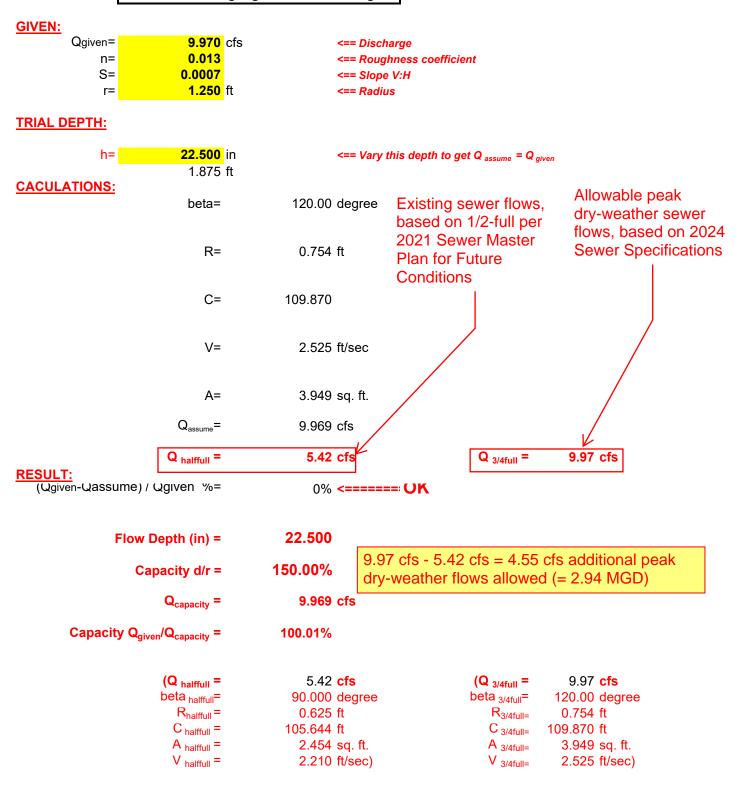
SEWER CAPACITY CALCULATIONS


Fuscoe Engineering, Inc.

Existing 18-inch sewer in W. Lugonia Ave. (west of Alabama St. to Nevada St.)

<u>GIVEN:</u>	Qgiven= n= S= r=	3.550 cfs 0.013 0.0014 0.750 ft	<== Ro	ischarge oughness coefficient lope V:H adius
TRIAL I	DEPTH:			
CACU	h=	<mark>13.500</mark> in 1.125 ft	<== Va	ary this depth to get $Q_{assume} = Q_{given}$ Allowable peak
	<u>ATIONS:</u>	beta=	120.00 degre	based on 1/2-full per Sewer Specifications
		R=	0.453 ft	2021 Sewer Master Plan for Future Conditions
		C=	99.239	
		V=	2.498 ft/sec	
		A=	1.422 sq. ft.	
		Q _{assume} =	3.551 cfs	
	_	Q _{halffull} =	1.92 cfs	Q _{3/4full} = 3.55 cfs
<u>RESUL</u> (Qgi ^v	<u>I:</u> ven-Qassume)	/ Qgiven %=	0% <====	====: UK
	Flow	Depth (in) =	13.500	3.55 cfs - 1.92 cfs = 1.63 cfs additional peak
	С	apacity d/r =	150.00%	dry-weather flows allowed (= 1.05 MGD)
		Q _{capacity} =	3.551 cfs	
	Capacity Q _g	iven/Q _{capacity} =	99.97%	
		(Q _{halffull} = beta _{halffull} = R _{halffull} = C _{halffull} = A _{halffull} = V _{halffull} =	1.92 cfs 90.000 degre 0.375 ft 94.958 ft 0.884 sq. ft. 2.176 ft/sec)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Existing 21-inch sewer in Nevada Street (Orange Ave. to W. Park Ave. & I-10 to W. Lugonia Ave.) & San Bernardino Ave. (Texas St. to Foothill Freeway (210))


Existing 24-inch sewer in Nevada Street (W. Park Ave. to I-10) & San Bernardino Avenue west of Foothill Freeway (210)

GIVEN: Qgiven= n= S= r=	<mark>6.540</mark> cfs 0.013 0.0010 1.000 ft	<== Disc <== Rou <== Slop <== Radi	ghness coefficient be V:H	
TRIAL DEPTH:				
h= CACULATIONS:	<mark>18.000</mark> in 1.500 ft beta=	< == Vary 120.00 degree	this depth to get Q _{assume} = Q _{give} Existing sewer flows, based on 1/2-full per	20
	R=	0.603 ft	2021 Sewer Master Plan for Future Conditions	Allowable peak dry-weather sewer flows, based on 2024 Sewer Specifications
	C=	105.367		
	V=	2.588 ft/sec		
	A=	2.527 sq. ft.		
	Q _{assume} =	6.541 cfs		
	Q _{halffull} =	3.55 cfs	Q _{3/4full} =	6.54 cfs
RESULT: (Qgiven-Qassume) /	Qgiven %=	0% <====	=== UK	
	Depth (in) = pacity d/r =		.54 cfs - 3.55 cfs = 2.99 ry-weather flows allowed	· · · · · · · · · · · · · · · · · · ·
	Q _{capacity} =	6.541 cfs		
Capacity Q _{give}		99.98%		
	(Q _{halffull} = beta _{halffull} = R _{halffull} = C _{halffull} = A _{halffull} = V _{halffull} =	3.55 cfs 90.000 degree 0.500 ft 101.116 ft 1.571 sq. ft. 2.261 ft/sec)	(Q _{3/4full} = beta _{3/4full} = R _{3/4full} = C _{3/4full} = A _{3/4full} = V _{3/4full} =	6.54 cfs 120.00 degree 0.603 ft 105.367 ft 2.527 sq. ft. 2.588 ft/sec)

Existing 27-inch sewer in Nevada Street, north of Palmetto Avenue & San Bernardino Ave, east of Foothill Freeway (I-210))

<u>GIVEN:</u> Qgiven= n= S= r=	8.030 cfs 0.013 0.0008 1.125 ft		<== Discharge <== Roughness coeffic <== Slope V:H <== Radius	ient	
TRIAL DEPTH:					
h=	<mark>20.250</mark> in 1.688 ft		<== Vary this depth to g	get Q _{assume} = Q _g	iven
CACULATIONS:	beta=	120.00	degree		
	R=	0.679	ft		
	C=	107.713			
	V=	2.510	ft/sec		
	A=	3.199	sq. ft.		
	Q _{assume} =	8.029	cfs		
	Q _{halffull} =	4.37	cfs	Q _{3/4full} =	8.03 cfs
RESULT: (Qgiven-Qassur	me) / Qgiven %=	0%	<=====: UK		
Flow Depth (in) =		20.250			
	Capacity d/r =	150.00%			
	Q _{capacity} =	8.029	cfs		
Capacity Q _{given} /Q _{capacity} =		100.01%			
	(Q _{halffull} = beta _{halffull} = R _{halffull} = C _{halffull} = A _{halffull} = V _{halffull} =	4.37 90.000 0.563 103.491 1.988 2.196	degree ft ft	(Q _{3/4full} = beta _{3/4full} = R _{3/4full} = C _{3/4full} = A _{3/4full} = V _{3/4full} =	8.03 cfs 120.00 degree 0.679 ft 107.713 ft 3.199 sq. ft. 2.510 ft/sec)

Existing 30-inch sewer in Nevada Street (W. Lugonia Ave. to Palmetto Ave.)

